diff --git a/libburn/trunk/Makefile.am b/libburn/trunk/Makefile.am index 0770096e..48dd8c59 100644 --- a/libburn/trunk/Makefile.am +++ b/libburn/trunk/Makefile.am @@ -25,6 +25,8 @@ libburn_libburn_la_SOURCES = \ libburn/debug.h \ libburn/drive.c \ libburn/drive.h \ + libburn/ecma130ab.c \ + libburn/ecma130ab.h \ libburn/error.h \ libburn/file.c \ libburn/file.h \ diff --git a/libburn/trunk/cdrskin/compile_cdrskin.sh b/libburn/trunk/cdrskin/compile_cdrskin.sh index 742d1bd2..6093f326 100755 --- a/libburn/trunk/cdrskin/compile_cdrskin.sh +++ b/libburn/trunk/cdrskin/compile_cdrskin.sh @@ -140,6 +140,7 @@ then libburn/toc.o \ \ libburn/crc.o \ + libburn/ecma130ab.o \ \ -lpthread diff --git a/libburn/trunk/libburn/ecma130ab.c b/libburn/trunk/libburn/ecma130ab.c new file mode 100644 index 00000000..1368c13c --- /dev/null +++ b/libburn/trunk/libburn/ecma130ab.c @@ -0,0 +1,701 @@ + +/* -*- indent-tabs-mode: t; tab-width: 8; c-basic-offset: 8; -*- */ + +/* ts A91016 : libburn/ecma130ab.c is the replacement for old libburn/lec.c + + Copyright 2009, Thomas Schmitt , libburnia-project.org + + This code module implements the production of RSPC parity bytes (P- and Q- + parity) and the scrambling of raw CD-ROM sectors as specified in ECMA-130: + http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-130.pdf + + The following statements about Galois Fields have been learned mostly from + http://www.cs.utk.edu/~plank/plank/papers/CS-96-332.pdf + by James S. Plank after an e-mail exchange with Norbert Preining. + + The output has been compared with the output of the old code of libburn + which was labeled "borrowed HEAVILY from cdrdao" and claimed by Joerg + Schilling to stem from code by Heiko Eissfeldt. + + ------------------------------------------------------------------------- + Note: In this text, "^" denotes exponentiation and not the binary exor + operation. Confusingly in the C code "^" is said exor. + Note: This is not C1, C2 which is rather mentioned in ECMA-130 Annex C and + always performed inside the drive. + ------------------------------------------------------------------------- + + + RSPC resp. P- and Q-Parity + + ECMA-130 Annex A prescribes to compute the parity bytes for P-columns and + Q-diagonals by RSPC based on a Galois Field GF(2^8) with enumerating + polynomials x^8+x^4+x^3+x^2+1 (i.e. 0x11d) and x^1 (i.e. 0x02). + Bytes 12 to 2075 of a audio-sized sector get ordered in two byte words + as 24 rows and 43 columns. Then this matrix is split into a LSB matrix + and a MSB matrix of the same layout. Parity bytes are to be computed + from these 8-bit values. + 2 P-bytes cover each column of 24 bytes. They get appended to the matrix + as rows 24 and 25. + 2 Q-bytes cover each the 26 diagonals of the extended matrix. + + Both parity byte pairs have to be computed so that extended rows or + diagonals match this linear equation: + H x V = (0,0) + H is a 2-row matrix of size n matching the length of the V ectors + [ 1 1 ... 1 1 ] + [ x^(n-1) x^(n-2) x^1 1 ] + Vp represents a P-row. It is a byte vector consisting of row bytes at + position 0 to 23 and the two parity bytes which shall be determined + at position 24 and 25. So Hp has 26 columns. + Vq represents a Q-diagonal. It is a byte vector consisting of diagonal + bytes at position 0 to 42 and the two parity bytes at position 43 and 44. + So Hq has 45 columns. The Q-diagonals cover P-parity bytes. + + By applying some high school algebra one gets the parity bytes b0, b1 of + vector V = (n_payload_bytes, b0 , b1) as + + b0 = ( H[n] * SUM(n_payload_bytes) - H[0..(n-1)] x n_payload_bytes ) + / (H[n+1] - H[n]) + b1 = - SUM(n_payload_bytes) - b0 + + H[i] is the i-the element of the second row of matrix H. E.g. H[0] = x^(n-1) + The result has to be computed by Galois field arithmetics. See below. + + The P-parity bytes of each column get reunited as LSB and MSB of two words. + word1 gets written to positions 1032 to 1074, word0 to 1075 to 1117. + The Q-parity bytes of each diagonal get reunited too. word1 goes to 1118 + to 1143, word0 to 1144 to 1169. + >>> I do not read this swap of word1 and word0 from ECMA-130 Annex A. + >>> But the new output matches the old output only if it is done that way. + >>> See correctness reservation below. + + Algebra on Galois fields is the same as on Rational Numbers. + But arithmetics is defined by operations on polynomials rather than the + usual integer arithmetics on binary numbers. + Addition and subtraction are identical with the binary exor operator. + Multiplication and division would demand polynomial division, e.g. by the + euclidian algorithm. The computing path over logarithms and powers follows + algebra and allows to reduce the arithmetic task to table lookups, additions + modulo 255, and exor operations. + + Needed are a logarithm table and a power table (or inverse logarithm table) + for Galois Field GF(2^8) which will serve to perform the peculiar + multiplication and division operation of Galois fields. + + The power table is simply an enumeration of x^n accorting to + GF-multiplication. It also serves as second line of matrix H for the parity + equations: + Hp[i] = gfpow[25-i] , i out of {0,..,25} + Hq[i] = gfpow[44-i] , i out of {0,..,44} + + The logarithm table is the inverse permutation of the power table. + + Some simplifications apply to the implementation: + In the world of Galois fields there is no difference between - and +. + The term (H[n+1] - H[n]) is constant: 3. + + ------------------------------------------------------------------------- + + + Scrambling + + ECMA-130 Annex B prescribes to exor the byte stream of an audio-sized sector + with a sequence of pseudo random bytes. It mentions polynomial x^15+x+1 and + a 15-bit register. + It shows a diagram of a Feedback Shift Register with 16 bit boxes, though. + + Comparing this with explanations in + http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm + one can recognize the diagram as a Fibonacci Implementation. But there seems + really to be one bit box too many. + + The difference of both lengths is expressed in function next_bit() by + the constants 0x3fff,0x4000 for 15 bit versus 0x7fff,0x8000 for 16 bits. + Comparing the output of both alternatives with the old scrambler output + lets 15 bit win for now. + + ------------------------------------------------------------------------- + + + Correctness Reservation + + In both cases, parity and scrambling, the goal for now is to replicate the + output of the dismissed old lec.c by output which is based on published + specs and own implementation code. Whether they comply to ECMA-130 is a + different question which can only be answered by real test cases for + raw CD recording. + + Of course this implementation will be corrected so that it really complies + to ECMA-130 as soon as evidence emerges that it does not yet. + +*/ + + +/* ------------------------------------------------------------------------- */ + + +/* Power and logarithm tables for GF(2^8). + Generated by burn_rspc_setup_tables() and burn_rspc_print_tables(). +*/ + +static unsigned char gfpow[256] = { + 1, 2, 4, 8, 16, 32, 64, 128, 29, 58, + 116, 232, 205, 135, 19, 38, 76, 152, 45, 90, + 180, 117, 234, 201, 143, 3, 6, 12, 24, 48, + 96, 192, 157, 39, 78, 156, 37, 74, 148, 53, + 106, 212, 181, 119, 238, 193, 159, 35, 70, 140, + 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, + 185, 111, 222, 161, 95, 190, 97, 194, 153, 47, + 94, 188, 101, 202, 137, 15, 30, 60, 120, 240, + 253, 231, 211, 187, 107, 214, 177, 127, 254, 225, + 223, 163, 91, 182, 113, 226, 217, 175, 67, 134, + 17, 34, 68, 136, 13, 26, 52, 104, 208, 189, + 103, 206, 129, 31, 62, 124, 248, 237, 199, 147, + 59, 118, 236, 197, 151, 51, 102, 204, 133, 23, + 46, 92, 184, 109, 218, 169, 79, 158, 33, 66, + 132, 21, 42, 84, 168, 77, 154, 41, 82, 164, + 85, 170, 73, 146, 57, 114, 228, 213, 183, 115, + 230, 209, 191, 99, 198, 145, 63, 126, 252, 229, + 215, 179, 123, 246, 241, 255, 227, 219, 171, 75, + 150, 49, 98, 196, 149, 55, 110, 220, 165, 87, + 174, 65, 130, 25, 50, 100, 200, 141, 7, 14, + 28, 56, 112, 224, 221, 167, 83, 166, 81, 162, + 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, + 172, 69, 138, 9, 18, 36, 72, 144, 61, 122, + 244, 245, 247, 243, 251, 235, 203, 139, 11, 22, + 44, 88, 176, 125, 250, 233, 207, 131, 27, 54, + 108, 216, 173, 71, 142 +}; + +static unsigned char gflog[256] = { + 0, 0, 1, 25, 2, 50, 26, 198, 3, 223, + 51, 238, 27, 104, 199, 75, 4, 100, 224, 14, + 52, 141, 239, 129, 28, 193, 105, 248, 200, 8, + 76, 113, 5, 138, 101, 47, 225, 36, 15, 33, + 53, 147, 142, 218, 240, 18, 130, 69, 29, 181, + 194, 125, 106, 39, 249, 185, 201, 154, 9, 120, + 77, 228, 114, 166, 6, 191, 139, 98, 102, 221, + 48, 253, 226, 152, 37, 179, 16, 145, 34, 136, + 54, 208, 148, 206, 143, 150, 219, 189, 241, 210, + 19, 92, 131, 56, 70, 64, 30, 66, 182, 163, + 195, 72, 126, 110, 107, 58, 40, 84, 250, 133, + 186, 61, 202, 94, 155, 159, 10, 21, 121, 43, + 78, 212, 229, 172, 115, 243, 167, 87, 7, 112, + 192, 247, 140, 128, 99, 13, 103, 74, 222, 237, + 49, 197, 254, 24, 227, 165, 153, 119, 38, 184, + 180, 124, 17, 68, 146, 217, 35, 32, 137, 46, + 55, 63, 209, 91, 149, 188, 207, 205, 144, 135, + 151, 178, 220, 252, 190, 97, 242, 86, 211, 171, + 20, 42, 93, 158, 132, 60, 57, 83, 71, 109, + 65, 162, 31, 45, 67, 216, 183, 123, 164, 118, + 196, 23, 73, 236, 127, 12, 111, 246, 108, 161, + 59, 82, 41, 157, 85, 170, 251, 96, 134, 177, + 187, 204, 62, 90, 203, 89, 95, 176, 156, 169, + 160, 81, 11, 245, 22, 235, 122, 117, 44, 215, + 79, 174, 213, 233, 230, 231, 173, 232, 116, 214, + 244, 234, 168, 80, 88, 175 +}; + + +/* Pseudo-random bytes which of course are exactly the same as with the + previously used code. + Generated by function print_ecma_130_scrambler(). +*/ +static unsigned char ecma_130_annex_b[2340] = { + 1, 128, 0, 96, 0, 40, 0, 30, 128, 8, + 96, 6, 168, 2, 254, 129, 128, 96, 96, 40, + 40, 30, 158, 136, 104, 102, 174, 170, 252, 127, + 1, 224, 0, 72, 0, 54, 128, 22, 224, 14, + 200, 4, 86, 131, 126, 225, 224, 72, 72, 54, + 182, 150, 246, 238, 198, 204, 82, 213, 253, 159, + 1, 168, 0, 126, 128, 32, 96, 24, 40, 10, + 158, 135, 40, 98, 158, 169, 168, 126, 254, 160, + 64, 120, 48, 34, 148, 25, 175, 74, 252, 55, + 1, 214, 128, 94, 224, 56, 72, 18, 182, 141, + 182, 229, 182, 203, 54, 215, 86, 222, 190, 216, + 112, 90, 164, 59, 59, 83, 83, 125, 253, 225, + 129, 136, 96, 102, 168, 42, 254, 159, 0, 104, + 0, 46, 128, 28, 96, 9, 232, 6, 206, 130, + 212, 97, 159, 104, 104, 46, 174, 156, 124, 105, + 225, 238, 200, 76, 86, 181, 254, 247, 0, 70, + 128, 50, 224, 21, 136, 15, 38, 132, 26, 227, + 75, 9, 247, 70, 198, 178, 210, 245, 157, 135, + 41, 162, 158, 249, 168, 66, 254, 177, 128, 116, + 96, 39, 104, 26, 174, 139, 60, 103, 81, 234, + 188, 79, 49, 244, 20, 71, 79, 114, 180, 37, + 183, 91, 54, 187, 86, 243, 126, 197, 224, 83, + 8, 61, 198, 145, 146, 236, 109, 141, 237, 165, + 141, 187, 37, 179, 91, 53, 251, 87, 3, 126, + 129, 224, 96, 72, 40, 54, 158, 150, 232, 110, + 206, 172, 84, 125, 255, 97, 128, 40, 96, 30, + 168, 8, 126, 134, 160, 98, 248, 41, 130, 158, + 225, 168, 72, 126, 182, 160, 118, 248, 38, 194, + 154, 209, 171, 28, 127, 73, 224, 54, 200, 22, + 214, 142, 222, 228, 88, 75, 122, 183, 99, 54, + 169, 214, 254, 222, 192, 88, 80, 58, 188, 19, + 49, 205, 212, 85, 159, 127, 40, 32, 30, 152, + 8, 106, 134, 175, 34, 252, 25, 129, 202, 224, + 87, 8, 62, 134, 144, 98, 236, 41, 141, 222, + 229, 152, 75, 42, 183, 95, 54, 184, 22, 242, + 142, 197, 164, 83, 59, 125, 211, 97, 157, 232, + 105, 142, 174, 228, 124, 75, 97, 247, 104, 70, + 174, 178, 252, 117, 129, 231, 32, 74, 152, 55, + 42, 150, 159, 46, 232, 28, 78, 137, 244, 102, + 199, 106, 210, 175, 29, 188, 9, 177, 198, 244, + 82, 199, 125, 146, 161, 173, 184, 125, 178, 161, + 181, 184, 119, 50, 166, 149, 186, 239, 51, 12, + 21, 197, 207, 19, 20, 13, 207, 69, 148, 51, + 47, 85, 220, 63, 25, 208, 10, 220, 7, 25, + 194, 138, 209, 167, 28, 122, 137, 227, 38, 201, + 218, 214, 219, 30, 219, 72, 91, 118, 187, 102, + 243, 106, 197, 239, 19, 12, 13, 197, 197, 147, + 19, 45, 205, 221, 149, 153, 175, 42, 252, 31, + 1, 200, 0, 86, 128, 62, 224, 16, 72, 12, + 54, 133, 214, 227, 30, 201, 200, 86, 214, 190, + 222, 240, 88, 68, 58, 179, 83, 53, 253, 215, + 1, 158, 128, 104, 96, 46, 168, 28, 126, 137, + 224, 102, 200, 42, 214, 159, 30, 232, 8, 78, + 134, 180, 98, 247, 105, 134, 174, 226, 252, 73, + 129, 246, 224, 70, 200, 50, 214, 149, 158, 239, + 40, 76, 30, 181, 200, 119, 22, 166, 142, 250, + 228, 67, 11, 113, 199, 100, 82, 171, 125, 191, + 97, 176, 40, 116, 30, 167, 72, 122, 182, 163, + 54, 249, 214, 194, 222, 209, 152, 92, 106, 185, + 239, 50, 204, 21, 149, 207, 47, 20, 28, 15, + 73, 196, 54, 211, 86, 221, 254, 217, 128, 90, + 224, 59, 8, 19, 70, 141, 242, 229, 133, 139, + 35, 39, 89, 218, 186, 219, 51, 27, 85, 203, + 127, 23, 96, 14, 168, 4, 126, 131, 96, 97, + 232, 40, 78, 158, 180, 104, 119, 110, 166, 172, + 122, 253, 227, 1, 137, 192, 102, 208, 42, 220, + 31, 25, 200, 10, 214, 135, 30, 226, 136, 73, + 166, 182, 250, 246, 195, 6, 209, 194, 220, 81, + 153, 252, 106, 193, 239, 16, 76, 12, 53, 197, + 215, 19, 30, 141, 200, 101, 150, 171, 46, 255, + 92, 64, 57, 240, 18, 196, 13, 147, 69, 173, + 243, 61, 133, 209, 163, 28, 121, 201, 226, 214, + 201, 158, 214, 232, 94, 206, 184, 84, 114, 191, + 101, 176, 43, 52, 31, 87, 72, 62, 182, 144, + 118, 236, 38, 205, 218, 213, 155, 31, 43, 72, + 31, 118, 136, 38, 230, 154, 202, 235, 23, 15, + 78, 132, 52, 99, 87, 105, 254, 174, 192, 124, + 80, 33, 252, 24, 65, 202, 176, 87, 52, 62, + 151, 80, 110, 188, 44, 113, 221, 228, 89, 139, + 122, 231, 99, 10, 169, 199, 62, 210, 144, 93, + 172, 57, 189, 210, 241, 157, 132, 105, 163, 110, + 249, 236, 66, 205, 241, 149, 132, 111, 35, 108, + 25, 237, 202, 205, 151, 21, 174, 143, 60, 100, + 17, 235, 76, 79, 117, 244, 39, 7, 90, 130, + 187, 33, 179, 88, 117, 250, 167, 3, 58, 129, + 211, 32, 93, 216, 57, 154, 146, 235, 45, 143, + 93, 164, 57, 187, 82, 243, 125, 133, 225, 163, + 8, 121, 198, 162, 210, 249, 157, 130, 233, 161, + 142, 248, 100, 66, 171, 113, 191, 100, 112, 43, + 100, 31, 107, 72, 47, 118, 156, 38, 233, 218, + 206, 219, 20, 91, 79, 123, 116, 35, 103, 89, + 234, 186, 207, 51, 20, 21, 207, 79, 20, 52, + 15, 87, 68, 62, 179, 80, 117, 252, 39, 1, + 218, 128, 91, 32, 59, 88, 19, 122, 141, 227, + 37, 137, 219, 38, 219, 90, 219, 123, 27, 99, + 75, 105, 247, 110, 198, 172, 82, 253, 253, 129, + 129, 160, 96, 120, 40, 34, 158, 153, 168, 106, + 254, 175, 0, 124, 0, 33, 192, 24, 80, 10, + 188, 7, 49, 194, 148, 81, 175, 124, 124, 33, + 225, 216, 72, 90, 182, 187, 54, 243, 86, 197, + 254, 211, 0, 93, 192, 57, 144, 18, 236, 13, + 141, 197, 165, 147, 59, 45, 211, 93, 157, 249, + 169, 130, 254, 225, 128, 72, 96, 54, 168, 22, + 254, 142, 192, 100, 80, 43, 124, 31, 97, 200, + 40, 86, 158, 190, 232, 112, 78, 164, 52, 123, + 87, 99, 126, 169, 224, 126, 200, 32, 86, 152, + 62, 234, 144, 79, 44, 52, 29, 215, 73, 158, + 182, 232, 118, 206, 166, 212, 122, 223, 99, 24, + 41, 202, 158, 215, 40, 94, 158, 184, 104, 114, + 174, 165, 188, 123, 49, 227, 84, 73, 255, 118, + 192, 38, 208, 26, 220, 11, 25, 199, 74, 210, + 183, 29, 182, 137, 182, 230, 246, 202, 198, 215, + 18, 222, 141, 152, 101, 170, 171, 63, 63, 80, + 16, 60, 12, 17, 197, 204, 83, 21, 253, 207, + 1, 148, 0, 111, 64, 44, 48, 29, 212, 9, + 159, 70, 232, 50, 206, 149, 148, 111, 47, 108, + 28, 45, 201, 221, 150, 217, 174, 218, 252, 91, + 1, 251, 64, 67, 112, 49, 228, 20, 75, 79, + 119, 116, 38, 167, 90, 250, 187, 3, 51, 65, + 213, 240, 95, 4, 56, 3, 82, 129, 253, 160, + 65, 184, 48, 114, 148, 37, 175, 91, 60, 59, + 81, 211, 124, 93, 225, 249, 136, 66, 230, 177, + 138, 244, 103, 7, 106, 130, 175, 33, 188, 24, + 113, 202, 164, 87, 59, 126, 147, 96, 109, 232, + 45, 142, 157, 164, 105, 187, 110, 243, 108, 69, + 237, 243, 13, 133, 197, 163, 19, 57, 205, 210, + 213, 157, 159, 41, 168, 30, 254, 136, 64, 102, + 176, 42, 244, 31, 7, 72, 2, 182, 129, 182, + 224, 118, 200, 38, 214, 154, 222, 235, 24, 79, + 74, 180, 55, 55, 86, 150, 190, 238, 240, 76, + 68, 53, 243, 87, 5, 254, 131, 0, 97, 192, + 40, 80, 30, 188, 8, 113, 198, 164, 82, 251, + 125, 131, 97, 161, 232, 120, 78, 162, 180, 121, + 183, 98, 246, 169, 134, 254, 226, 192, 73, 144, + 54, 236, 22, 205, 206, 213, 148, 95, 47, 120, + 28, 34, 137, 217, 166, 218, 250, 219, 3, 27, + 65, 203, 112, 87, 100, 62, 171, 80, 127, 124, + 32, 33, 216, 24, 90, 138, 187, 39, 51, 90, + 149, 251, 47, 3, 92, 1, 249, 192, 66, 208, + 49, 156, 20, 105, 207, 110, 212, 44, 95, 93, + 248, 57, 130, 146, 225, 173, 136, 125, 166, 161, + 186, 248, 115, 2, 165, 193, 187, 16, 115, 76, + 37, 245, 219, 7, 27, 66, 139, 113, 167, 100, + 122, 171, 99, 63, 105, 208, 46, 220, 28, 89, + 201, 250, 214, 195, 30, 209, 200, 92, 86, 185, + 254, 242, 192, 69, 144, 51, 44, 21, 221, 207, + 25, 148, 10, 239, 71, 12, 50, 133, 213, 163, + 31, 57, 200, 18, 214, 141, 158, 229, 168, 75, + 62, 183, 80, 118, 188, 38, 241, 218, 196, 91, + 19, 123, 77, 227, 117, 137, 231, 38, 202, 154, + 215, 43, 30, 159, 72, 104, 54, 174, 150, 252, + 110, 193, 236, 80, 77, 252, 53, 129, 215, 32, + 94, 152, 56, 106, 146, 175, 45, 188, 29, 177, + 201, 180, 86, 247, 126, 198, 160, 82, 248, 61, + 130, 145, 161, 172, 120, 125, 226, 161, 137, 184, + 102, 242, 170, 197, 191, 19, 48, 13, 212, 5, + 159, 67, 40, 49, 222, 148, 88, 111, 122, 172, + 35, 61, 217, 209, 154, 220, 107, 25, 239, 74, + 204, 55, 21, 214, 143, 30, 228, 8, 75, 70, + 183, 114, 246, 165, 134, 251, 34, 195, 89, 145, + 250, 236, 67, 13, 241, 197, 132, 83, 35, 125, + 217, 225, 154, 200, 107, 22, 175, 78, 252, 52, + 65, 215, 112, 94, 164, 56, 123, 82, 163, 125, + 185, 225, 178, 200, 117, 150, 167, 46, 250, 156, + 67, 41, 241, 222, 196, 88, 83, 122, 189, 227, + 49, 137, 212, 102, 223, 106, 216, 47, 26, 156, + 11, 41, 199, 94, 210, 184, 93, 178, 185, 181, + 178, 247, 53, 134, 151, 34, 238, 153, 140, 106, + 229, 239, 11, 12, 7, 69, 194, 179, 17, 181, + 204, 119, 21, 230, 143, 10, 228, 7, 11, 66, + 135, 113, 162, 164, 121, 187, 98, 243, 105, 133, + 238, 227, 12, 73, 197, 246, 211, 6, 221, 194, + 217, 145, 154, 236, 107, 13, 239, 69, 140, 51, + 37, 213, 219, 31, 27, 72, 11, 118, 135, 102, + 226, 170, 201, 191, 22, 240, 14, 196, 4, 83, + 67, 125, 241, 225, 132, 72, 99, 118, 169, 230, + 254, 202, 192, 87, 16, 62, 140, 16, 101, 204, + 43, 21, 223, 79, 24, 52, 10, 151, 71, 46, + 178, 156, 117, 169, 231, 62, 202, 144, 87, 44, + 62, 157, 208, 105, 156, 46, 233, 220, 78, 217, + 244, 90, 199, 123, 18, 163, 77, 185, 245, 178, + 199, 53, 146, 151, 45, 174, 157, 188, 105, 177, + 238, 244, 76, 71, 117, 242, 167, 5, 186, 131, + 51, 33, 213, 216, 95, 26, 184, 11, 50, 135, + 85, 162, 191, 57, 176, 18, 244, 13, 135, 69, + 162, 179, 57, 181, 210, 247, 29, 134, 137, 162, + 230, 249, 138, 194, 231, 17, 138, 140, 103, 37, + 234, 155, 15, 43, 68, 31, 115, 72, 37, 246, + 155, 6, 235, 66, 207, 113, 148, 36, 111, 91, + 108, 59, 109, 211, 109, 157, 237, 169, 141, 190, + 229, 176, 75, 52, 55, 87, 86, 190, 190, 240, + 112, 68, 36, 51, 91, 85, 251, 127, 3, 96, + 1, 232, 0, 78, 128, 52, 96, 23, 104, 14, + 174, 132, 124, 99, 97, 233, 232, 78, 206, 180, + 84, 119, 127, 102, 160, 42, 248, 31, 2, 136, + 1, 166, 128, 122, 224, 35, 8, 25, 198, 138, + 210, 231, 29, 138, 137, 167, 38, 250, 154, 195, + 43, 17, 223, 76, 88, 53, 250, 151, 3, 46, + 129, 220, 96, 89, 232, 58, 206, 147, 20, 109, + 207, 109, 148, 45, 175, 93, 188, 57, 177, 210, + 244, 93, 135, 121, 162, 162, 249, 185, 130, 242, + 225, 133, 136, 99, 38, 169, 218, 254, 219, 0, + 91, 64, 59, 112, 19, 100, 13, 235, 69, 143, + 115, 36, 37, 219, 91, 27, 123, 75, 99, 119, + 105, 230, 174, 202, 252, 87, 1, 254, 128, 64, + 96, 48, 40, 20, 30, 143, 72, 100, 54, 171, + 86, 255, 126, 192, 32, 80, 24, 60, 10, 145, + 199, 44, 82, 157, 253, 169, 129, 190, 224, 112, + 72, 36, 54, 155, 86, 235, 126, 207, 96, 84, + 40, 63, 94, 144, 56, 108, 18, 173, 205, 189, + 149, 177, 175, 52, 124, 23, 97, 206, 168, 84, + 126, 191, 96, 112, 40, 36, 30, 155, 72, 107, + 118, 175, 102, 252, 42, 193, 223, 16, 88, 12, + 58, 133, 211, 35, 29, 217, 201, 154, 214, 235, + 30, 207, 72, 84, 54, 191, 86, 240, 62, 196, + 16, 83, 76, 61, 245, 209, 135, 28, 98, 137, + 233, 166, 206, 250, 212, 67, 31, 113, 200, 36, + 86, 155, 126, 235, 96, 79, 104, 52, 46, 151, + 92, 110, 185, 236, 114, 205, 229, 149, 139, 47, + 39, 92, 26, 185, 203, 50, 215, 85, 158, 191, + 40, 112, 30, 164, 8, 123, 70, 163, 114, 249, + 229, 130, 203, 33, 151, 88, 110, 186, 172, 115, + 61, 229, 209, 139, 28, 103, 73, 234, 182, 207, + 54, 212, 22, 223, 78, 216, 52, 90, 151, 123, + 46, 163, 92, 121, 249, 226, 194, 201, 145, 150, + 236, 110, 205, 236, 85, 141, 255, 37, 128, 27, + 32, 11, 88, 7, 122, 130, 163, 33, 185, 216, + 114, 218, 165, 155, 59, 43, 83, 95, 125, 248, + 33, 130, 152, 97, 170, 168, 127, 62, 160, 16, + 120, 12, 34, 133, 217, 163, 26, 249, 203, 2, + 215, 65, 158, 176, 104, 116, 46, 167, 92, 122, + 185, 227, 50, 201, 213, 150, 223, 46, 216, 28, + 90, 137, 251, 38, 195, 90, 209, 251, 28, 67, + 73, 241, 246, 196, 70, 211, 114, 221, 229, 153 +}; + + +/* ------------------------------------------------------------------------- */ + + +/* This is the new implementation of P- and Q-parity generation. + It is totally unoptimized and thus needs about 50 percent more time than the + old implementation (both with gcc -O2 on AMD 64 bit). Measurements indicate + that about 400 MIPS are needed for 48x CD speed (7.1 MB/s). +*/ + +static unsigned char burn_rspc_mult(unsigned char a, unsigned char b) +{ + if (a == 0 || b == 0) + return 0; + return gfpow[(gflog[a] + gflog[b]) % 255]; +} + + +static unsigned char burn_rspc_div(unsigned char a, unsigned char b) +{ + int d; + + if (a == 0) + return 0; + if (b == 0) + return -1; + d = gflog[a] - gflog[b]; + if (d < 0) + d += 255; + return gfpow[d]; +} + + +static int burn_rspc_p0p1(unsigned char *sector, int col, int msb, + unsigned char *p0, unsigned char *p1) +{ + unsigned char *start, b; + unsigned int i, sum_v = 0, hxv = 0; + + start = sector + 12 + 2 * col + !!msb; + for(i = 0; i < 24; i++) { + b = start[i * 86]; + sum_v ^= b; + hxv ^= burn_rspc_mult(b, gfpow[25 - i]); + } + *p0 = burn_rspc_div(burn_rspc_mult(gfpow[1], sum_v) ^ hxv, + 3); /* gfpow[1] ^ gfpow[0]); */ + *p1 = sum_v ^ *p0; + return 1; +} + + +int burn_rspc_parity_p(unsigned char *sector) +{ + int i; + unsigned char p0_lsb, p0_msb, p1_lsb, p1_msb; + + /* Loop over P columns */ + for(i = 0; i < 43; i++) { + burn_rspc_p0p1(sector, i, 0, &p0_lsb, &p1_lsb); + burn_rspc_p0p1(sector, i, 1, &p0_msb, &p1_msb); + sector[2162 + 2 * i] = p0_lsb; + sector[2162 + 2 * i + 1] = p0_msb; + sector[2076 + 2 * i] = p1_lsb; + sector[2076 + 2 * i + 1] = p1_msb; + +#ifdef Libburn_with_lec_generatoR + if(verbous) { + printf("p %2d : %2.2X %2.2X ", i, + (unsigned int) p0_lsb, (unsigned int) p0_msb); + printf("%2.2X %2.2X ", + (unsigned int) p1_lsb, (unsigned int) p1_msb); + printf("-> %d,%d\n", 2162 + 2 * i, 2076 + 2 * i); + } +#endif /* Libburn_with_lec_generatoR */ + + } + return 1 ; +} + + +static int burn_rspc_q0q1(unsigned char *sector, int diag, int msb, + unsigned char *q0, unsigned char *q1) +{ + unsigned char *start, b; + unsigned int i, sum_v = 0, hxv = 0; + + start = sector + 12; + for(i = 0; i < 43; i++) { + b = start[(2 * 43 * diag + i * 88 + !!msb) % 2236]; + sum_v ^= b; + hxv ^= burn_rspc_mult(b, gfpow[44 - i]); + } + *q0 = burn_rspc_div(burn_rspc_mult(gfpow[1], sum_v) ^ hxv, + 3); /* gfpow[1] ^ gfpow[0]); */ + *q1 = sum_v ^ *q0; + return 1; +} + + +int burn_rspc_parity_q(unsigned char *sector) +{ + int i; + unsigned char q0_lsb, q0_msb, q1_lsb, q1_msb; + + /* Loop over Q diagonals */ + for(i = 0; i < 26; i++) { + burn_rspc_q0q1(sector, i, 0, &q0_lsb, &q1_lsb); + burn_rspc_q0q1(sector, i, 1, &q0_msb, &q1_msb); + sector[2300 + 2 * i] = q0_lsb; + sector[2300 + 2 * i + 1] = q0_msb; + sector[2248 + 2 * i] = q1_lsb; + sector[2248 + 2 * i + 1] = q1_msb; + +#ifdef Libburn_with_lec_generatoR + if(verbous) { + printf("q %2d : %2.2X %2.2X ", i, + (unsigned int) q0_lsb, (unsigned int) q0_msb); + printf("%2.2X %2.2X ", + (unsigned int) q1_lsb, (unsigned int) q1_msb); + printf("-> %d,%d\n", 2300 + 2 * i, 2248 + 2 * i); + } +#endif /* Libburn_with_lec_generatoR */ + + } + return 1; +} + +/* ------------------------------------------------------------------------- */ + + +/* The new implementation of the ECMA-130 Annex B scrambler. + It is totally unoptimized. One should make use of larger word operations. + Measurements indicate that about 50 MIPS are needed for 48x CD speed. +*/ + +int burn_ecma130_scramble(unsigned char *sector) +{ + int i; + unsigned char *s; + + s = sector + 12; + for (i = 0; i < 2340; i++) + s[i] ^= ecma_130_annex_b[i]; + return 1; +} + + +/* ------------------------------------------------------------------------- */ + + +/* The following code is not needed for libburn but rather documents the + origin of the tables above. In libburn it will not be compiled. +*/ + + +#ifdef Libburn_with_lec_generatoR + + +/* This function produced the content of gflog[] and gfpow[] +*/ +static int burn_rspc_setup_tables(void) +{ + unsigned int b, l; + + memset(gflog, 0, sizeof(gflog)); + memset(gfpow, 0, sizeof(gfpow)); + b = 1; + for (l = 0; l < 255; l++) { + gfpow[l] = (unsigned char) b; + gflog[b] = (unsigned char) l; + b = b << 1; + if (b & 256) + b = b ^ 0x11d; + } + return 0; +} + + +/* This function printed the content of gflog[] and gfpow[] as C code + and compared the content with the tables of the old implementation. +*/ +static int burn_rspc_print_tables(void) +{ + int i; + + printf("static unsigned char gfpow[256] = {"); + printf("\n\t"); + for(i= 0; i < 255; i++) { + printf("%3u, ", gfpow[i]); + +#ifdef Libburn_with_old_lec_comparisoN + if(gfpow[i] != gf8_ilog[i]) + fprintf(stderr, "*** ILOG %d : %d != %d ***\n", i, gfpow[i], gf8_ilog[i]); +#endif + + if((i % 10) == 9) + printf("\n\t"); + } + printf("\n};\n\n"); + + printf("static unsigned char gflog[256] = {"); + printf("\n\t"); + for(i= 0; i < 256; i++) { + printf(" %3u,", gflog[i]); + +#ifdef Libburn_with_old_lec_comparisoN + if(gflog[i] != gf8_log[i]) + fprintf(stderr, "*** LOG %d : %d != %d ***\n", i, gflog[i], gf8_log[i]); +#endif + + if((i % 10) == 9) + printf("\n\t"); + } + printf("\n};\n"); + + return 0; +} + + +/* This code was used to generate the content of array ecma_130_annex_b[] + It implements the prescription to use the lowest bit as output, to shift + the bits down by one, to exor the output bit with the next lowest bit, + and to put that exor result into bit 14 of the register. +*/ +static unsigned short ecma_130_fsr = 1; + +static int next_bit(void) +{ + int ret; + + ret = ecma_130_fsr & 1; + ecma_130_fsr = (ecma_130_fsr >> 1) & 0x3fff; + if (ret ^ (ecma_130_fsr & 1)) + ecma_130_fsr |= 0x4000; + return ret; +} + + +static int print_ecma_130_scrambler(void) +{ + int i, j, b; + + ecma_130_fsr = 1; + printf("static unsigned char ecma_130_annex_b[2340] = {"); + printf("\n\t"); + for (i = 0; i < 2340; i++) { + b = 0; + for (j = 0; j < 8; j++) + b |= next_bit() << j; + + printf("%3u, ", b); + if ((i % 10) == 9) + printf("\n\t"); + } + printf("\n};\n"); + return 1; +} + +#endif /* Libburn_with_lec_generatoR */ + diff --git a/libburn/trunk/libburn/ecma130ab.h b/libburn/trunk/libburn/ecma130ab.h new file mode 100644 index 00000000..36e9159a --- /dev/null +++ b/libburn/trunk/libburn/ecma130ab.h @@ -0,0 +1,23 @@ + +/* -*- indent-tabs-mode: t; tab-width: 8; c-basic-offset: 8; -*- */ + +/* ts A91016 : libburn/ecma130ab.h is the replacement for old libburn/lec.h + + Copyright 2009, Thomas Schmitt , libburnia-project.org + + This code module implements the computations prescribed in ECMA-130 Annex A + and B. For explanations of the underlying mathematics see ecma130ab.c . + +*/ + +#ifndef Libburn_ecma130ab_includeD +#define Libburn_ecma130ab_includeD 1 + +int burn_rspc_parity_p(unsigned char *sector); + +int burn_rspc_parity_q(unsigned char *sector); + +int burn_ecma130_scramble(unsigned char *sector); + +#endif /* ! Libburn_ecma130ab_includeD */ + diff --git a/libburn/trunk/libburn/libburn.h b/libburn/trunk/libburn/libburn.h index 1513533f..2981f804 100644 --- a/libburn/trunk/libburn/libburn.h +++ b/libburn/trunk/libburn/libburn.h @@ -141,19 +141,22 @@ enum burn_write_types only raw block types are supported With DVD and BD media: not supported. - ts A90901: THIS HAS BEEN DISABLED because its implementation + ts A90901: This had been disabled because its implementation relied on code from cdrdao which is not understood currently. A burn run will abort with "FATAL" error message if this mode is attempted. @since 0.7.2 + ts A91016: Re-implemented according to ECMA-130 Annex A and B. + Slower but understood and explained. + @since 0.7.4 */ BURN_WRITE_RAW, /** In replies this indicates that not any writing will work. As parameter for inquiries it indicates that no particular write mode shall is specified. - Do not use for setting a write mode for burning. It won't work. + Do not use for setting a write mode for burning. It will not work. */ BURN_WRITE_NONE }; diff --git a/libburn/trunk/libburn/sector.c b/libburn/trunk/libburn/sector.c index 8a56fccf..5cf27c60 100644 --- a/libburn/trunk/libburn/sector.c +++ b/libburn/trunk/libburn/sector.c @@ -21,6 +21,8 @@ #include "libdax_msgs.h" extern struct libdax_msgs *libdax_messenger; +#include "ecma130ab.h" + #ifdef Libburn_log_in_and_out_streaM /* <<< ts A61031 */ @@ -734,6 +736,57 @@ int sector_headers_is_ok(struct burn_write_opts *o, int mode) int sector_headers(struct burn_write_opts *o, unsigned char *out, int mode, int leadin) { + +#ifdef Libburn_ecma130ab_includeD + + struct burn_drive *d = o->drive; + unsigned int crc; + int min, sec, frame; + int modebyte = -1; + int ret; + + ret = sector_headers_is_ok(o, mode); + if (ret != 2) + return !!ret; + modebyte = 1; + + out[0] = 0; + memset(out + 1, 0xFF, 10); /* sync */ + out[11] = 0; + + if (leadin) { + burn_lba_to_msf(d->rlba, &min, &sec, &frame); + out[12] = dec_to_bcd(min) + 0xA0; + out[13] = dec_to_bcd(sec); + out[14] = dec_to_bcd(frame); + out[15] = modebyte; + } else { + burn_lba_to_msf(d->alba, &min, &sec, &frame); + out[12] = dec_to_bcd(min); + out[13] = dec_to_bcd(sec); + out[14] = dec_to_bcd(frame); + out[15] = modebyte; + } + if (mode & BURN_MODE1) { + crc = crc_32(out, 2064); + out[2064] = crc & 0xFF; + crc >>= 8; + out[2065] = crc & 0xFF; + crc >>= 8; + out[2066] = crc & 0xFF; + crc >>= 8; + out[2067] = crc & 0xFF; + } + if (mode & BURN_MODE1) { + memset(out + 2068, 0, 8); + burn_rspc_parity_p(out); + burn_rspc_parity_q(out); + } + burn_ecma130_scramble(out); + return 1; + +#else /* Libburn_ecma130ab_includeD */ + int ret; ret = sector_headers_is_ok(o, mode); @@ -750,8 +803,52 @@ int sector_headers(struct burn_write_opts *o, unsigned char *out, LIBDAX_MSGS_SEV_FATAL, LIBDAX_MSGS_PRIO_HIGH, "Raw CD write modes are not supported", 0, 0); return 0; + +#endif /* ! Libburn_ecma130ab_includeD */ + } +#if 0 +void process_q(struct burn_drive *d, unsigned char *q) +{ + unsigned char i[5]; + int mode; + + mode = q[0] & 0xF; +/* burn_print(12, "mode: %d : ", mode);*/ + switch (mode) { + case 1: +/* burn_print(12, "tno = %d : ", q[1]); + burn_print(12, "index = %d\n", q[2]); +*/ + /* q[1] is the track number (starting at 1) q[2] is the index + number (starting at 0) */ +#warning this is totally bogus + if (q[1] - 1 > 99) + break; + if (q[2] > d->toc->track[q[1] - 1].indices) { + burn_print(12, "new index at %d\n", d->alba); + d->toc->track[q[1] - 1].index[q[2]] = d->alba; + d->toc->track[q[1] - 1].indices++; + } + break; + case 2: + /* XXX dont ignore these */ + break; + case 3: +/* burn_print(12, "ISRC data in mode 3 q\n");*/ + i[0] = isrc[(q[1] << 2) >> 2]; +/* burn_print(12, "0x%x 0x%x 0x%x 0x%x 0x%x\n", q[1], q[2], q[3], q[4], q[5]); + burn_print(12, "ISRC - %c%c%c%c%c\n", i[0], i[1], i[2], i[3], i[4]); +*/ + break; + default: + + /* ts A61009 : if reactivated then witout Assert */ + a ssert(0); + } +} +#endif /* this needs more info. subs in the data? control/adr? */ @@ -766,7 +863,7 @@ int sector_identify(unsigned char *data) { /* - scramble(data); + burn_ecma130_scramble(data); check mode byte for 1 or 2 test parity to see if it's a valid sector if invalid, return BURN_MODE_AUDIO;