Re-implemented ECMA-130 P-parity, Q-parity and scrambling for BURN_WRITE_RAW

This commit is contained in:
Thomas Schmitt 2009-10-17 13:17:06 +00:00
parent de8ecab9b4
commit 39a7d18266
6 changed files with 830 additions and 3 deletions

View File

@ -25,6 +25,8 @@ libburn_libburn_la_SOURCES = \
libburn/debug.h \
libburn/drive.c \
libburn/drive.h \
libburn/ecma130ab.c \
libburn/ecma130ab.h \
libburn/error.h \
libburn/file.c \
libburn/file.h \

View File

@ -140,6 +140,7 @@ then
libburn/toc.o \
\
libburn/crc.o \
libburn/ecma130ab.o \
\
-lpthread

701
libburn/ecma130ab.c Normal file
View File

@ -0,0 +1,701 @@
/* -*- indent-tabs-mode: t; tab-width: 8; c-basic-offset: 8; -*- */
/* ts A91016 : libburn/ecma130ab.c is the replacement for old libburn/lec.c
Copyright 2009, Thomas Schmitt <scdbackup@gmx.net>, libburnia-project.org
This code module implements the production of RSPC parity bytes (P- and Q-
parity) and the scrambling of raw CD-ROM sectors as specified in ECMA-130:
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-130.pdf
The following statements about Galois Fields have been learned mostly from
http://www.cs.utk.edu/~plank/plank/papers/CS-96-332.pdf
by James S. Plank after an e-mail exchange with Norbert Preining.
The output has been compared with the output of the old code of libburn
which was labeled "borrowed HEAVILY from cdrdao" and claimed by Joerg
Schilling to stem from code by Heiko Eissfeldt.
-------------------------------------------------------------------------
Note: In this text, "^" denotes exponentiation and not the binary exor
operation. Confusingly in the C code "^" is said exor.
Note: This is not C1, C2 which is rather mentioned in ECMA-130 Annex C and
always performed inside the drive.
-------------------------------------------------------------------------
RSPC resp. P- and Q-Parity
ECMA-130 Annex A prescribes to compute the parity bytes for P-columns and
Q-diagonals by RSPC based on a Galois Field GF(2^8) with enumerating
polynomials x^8+x^4+x^3+x^2+1 (i.e. 0x11d) and x^1 (i.e. 0x02).
Bytes 12 to 2075 of a audio-sized sector get ordered in two byte words
as 24 rows and 43 columns. Then this matrix is split into a LSB matrix
and a MSB matrix of the same layout. Parity bytes are to be computed
from these 8-bit values.
2 P-bytes cover each column of 24 bytes. They get appended to the matrix
as rows 24 and 25.
2 Q-bytes cover each the 26 diagonals of the extended matrix.
Both parity byte pairs have to be computed so that extended rows or
diagonals match this linear equation:
H x V = (0,0)
H is a 2-row matrix of size n matching the length of the V ectors
[ 1 1 ... 1 1 ]
[ x^(n-1) x^(n-2) x^1 1 ]
Vp represents a P-row. It is a byte vector consisting of row bytes at
position 0 to 23 and the two parity bytes which shall be determined
at position 24 and 25. So Hp has 26 columns.
Vq represents a Q-diagonal. It is a byte vector consisting of diagonal
bytes at position 0 to 42 and the two parity bytes at position 43 and 44.
So Hq has 45 columns. The Q-diagonals cover P-parity bytes.
By applying some high school algebra one gets the parity bytes b0, b1 of
vector V = (n_payload_bytes, b0 , b1) as
b0 = ( H[n] * SUM(n_payload_bytes) - H[0..(n-1)] x n_payload_bytes )
/ (H[n+1] - H[n])
b1 = - SUM(n_payload_bytes) - b0
H[i] is the i-the element of the second row of matrix H. E.g. H[0] = x^(n-1)
The result has to be computed by Galois field arithmetics. See below.
The P-parity bytes of each column get reunited as LSB and MSB of two words.
word1 gets written to positions 1032 to 1074, word0 to 1075 to 1117.
The Q-parity bytes of each diagonal get reunited too. word1 goes to 1118
to 1143, word0 to 1144 to 1169.
>>> I do not read this swap of word1 and word0 from ECMA-130 Annex A.
>>> But the new output matches the old output only if it is done that way.
>>> See correctness reservation below.
Algebra on Galois fields is the same as on Rational Numbers.
But arithmetics is defined by operations on polynomials rather than the
usual integer arithmetics on binary numbers.
Addition and subtraction are identical with the binary exor operator.
Multiplication and division would demand polynomial division, e.g. by the
euclidian algorithm. The computing path over logarithms and powers follows
algebra and allows to reduce the arithmetic task to table lookups, additions
modulo 255, and exor operations.
Needed are a logarithm table and a power table (or inverse logarithm table)
for Galois Field GF(2^8) which will serve to perform the peculiar
multiplication and division operation of Galois fields.
The power table is simply an enumeration of x^n accorting to
GF-multiplication. It also serves as second line of matrix H for the parity
equations:
Hp[i] = gfpow[25-i] , i out of {0,..,25}
Hq[i] = gfpow[44-i] , i out of {0,..,44}
The logarithm table is the inverse permutation of the power table.
Some simplifications apply to the implementation:
In the world of Galois fields there is no difference between - and +.
The term (H[n+1] - H[n]) is constant: 3.
-------------------------------------------------------------------------
Scrambling
ECMA-130 Annex B prescribes to exor the byte stream of an audio-sized sector
with a sequence of pseudo random bytes. It mentions polynomial x^15+x+1 and
a 15-bit register.
It shows a diagram of a Feedback Shift Register with 16 bit boxes, though.
Comparing this with explanations in
http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
one can recognize the diagram as a Fibonacci Implementation. But there seems
really to be one bit box too many.
The difference of both lengths is expressed in function next_bit() by
the constants 0x3fff,0x4000 for 15 bit versus 0x7fff,0x8000 for 16 bits.
Comparing the output of both alternatives with the old scrambler output
lets 15 bit win for now.
-------------------------------------------------------------------------
Correctness Reservation
In both cases, parity and scrambling, the goal for now is to replicate the
output of the dismissed old lec.c by output which is based on published
specs and own implementation code. Whether they comply to ECMA-130 is a
different question which can only be answered by real test cases for
raw CD recording.
Of course this implementation will be corrected so that it really complies
to ECMA-130 as soon as evidence emerges that it does not yet.
*/
/* ------------------------------------------------------------------------- */
/* Power and logarithm tables for GF(2^8).
Generated by burn_rspc_setup_tables() and burn_rspc_print_tables().
*/
static unsigned char gfpow[256] = {
1, 2, 4, 8, 16, 32, 64, 128, 29, 58,
116, 232, 205, 135, 19, 38, 76, 152, 45, 90,
180, 117, 234, 201, 143, 3, 6, 12, 24, 48,
96, 192, 157, 39, 78, 156, 37, 74, 148, 53,
106, 212, 181, 119, 238, 193, 159, 35, 70, 140,
5, 10, 20, 40, 80, 160, 93, 186, 105, 210,
185, 111, 222, 161, 95, 190, 97, 194, 153, 47,
94, 188, 101, 202, 137, 15, 30, 60, 120, 240,
253, 231, 211, 187, 107, 214, 177, 127, 254, 225,
223, 163, 91, 182, 113, 226, 217, 175, 67, 134,
17, 34, 68, 136, 13, 26, 52, 104, 208, 189,
103, 206, 129, 31, 62, 124, 248, 237, 199, 147,
59, 118, 236, 197, 151, 51, 102, 204, 133, 23,
46, 92, 184, 109, 218, 169, 79, 158, 33, 66,
132, 21, 42, 84, 168, 77, 154, 41, 82, 164,
85, 170, 73, 146, 57, 114, 228, 213, 183, 115,
230, 209, 191, 99, 198, 145, 63, 126, 252, 229,
215, 179, 123, 246, 241, 255, 227, 219, 171, 75,
150, 49, 98, 196, 149, 55, 110, 220, 165, 87,
174, 65, 130, 25, 50, 100, 200, 141, 7, 14,
28, 56, 112, 224, 221, 167, 83, 166, 81, 162,
89, 178, 121, 242, 249, 239, 195, 155, 43, 86,
172, 69, 138, 9, 18, 36, 72, 144, 61, 122,
244, 245, 247, 243, 251, 235, 203, 139, 11, 22,
44, 88, 176, 125, 250, 233, 207, 131, 27, 54,
108, 216, 173, 71, 142
};
static unsigned char gflog[256] = {
0, 0, 1, 25, 2, 50, 26, 198, 3, 223,
51, 238, 27, 104, 199, 75, 4, 100, 224, 14,
52, 141, 239, 129, 28, 193, 105, 248, 200, 8,
76, 113, 5, 138, 101, 47, 225, 36, 15, 33,
53, 147, 142, 218, 240, 18, 130, 69, 29, 181,
194, 125, 106, 39, 249, 185, 201, 154, 9, 120,
77, 228, 114, 166, 6, 191, 139, 98, 102, 221,
48, 253, 226, 152, 37, 179, 16, 145, 34, 136,
54, 208, 148, 206, 143, 150, 219, 189, 241, 210,
19, 92, 131, 56, 70, 64, 30, 66, 182, 163,
195, 72, 126, 110, 107, 58, 40, 84, 250, 133,
186, 61, 202, 94, 155, 159, 10, 21, 121, 43,
78, 212, 229, 172, 115, 243, 167, 87, 7, 112,
192, 247, 140, 128, 99, 13, 103, 74, 222, 237,
49, 197, 254, 24, 227, 165, 153, 119, 38, 184,
180, 124, 17, 68, 146, 217, 35, 32, 137, 46,
55, 63, 209, 91, 149, 188, 207, 205, 144, 135,
151, 178, 220, 252, 190, 97, 242, 86, 211, 171,
20, 42, 93, 158, 132, 60, 57, 83, 71, 109,
65, 162, 31, 45, 67, 216, 183, 123, 164, 118,
196, 23, 73, 236, 127, 12, 111, 246, 108, 161,
59, 82, 41, 157, 85, 170, 251, 96, 134, 177,
187, 204, 62, 90, 203, 89, 95, 176, 156, 169,
160, 81, 11, 245, 22, 235, 122, 117, 44, 215,
79, 174, 213, 233, 230, 231, 173, 232, 116, 214,
244, 234, 168, 80, 88, 175
};
/* Pseudo-random bytes which of course are exactly the same as with the
previously used code.
Generated by function print_ecma_130_scrambler().
*/
static unsigned char ecma_130_annex_b[2340] = {
1, 128, 0, 96, 0, 40, 0, 30, 128, 8,
96, 6, 168, 2, 254, 129, 128, 96, 96, 40,
40, 30, 158, 136, 104, 102, 174, 170, 252, 127,
1, 224, 0, 72, 0, 54, 128, 22, 224, 14,
200, 4, 86, 131, 126, 225, 224, 72, 72, 54,
182, 150, 246, 238, 198, 204, 82, 213, 253, 159,
1, 168, 0, 126, 128, 32, 96, 24, 40, 10,
158, 135, 40, 98, 158, 169, 168, 126, 254, 160,
64, 120, 48, 34, 148, 25, 175, 74, 252, 55,
1, 214, 128, 94, 224, 56, 72, 18, 182, 141,
182, 229, 182, 203, 54, 215, 86, 222, 190, 216,
112, 90, 164, 59, 59, 83, 83, 125, 253, 225,
129, 136, 96, 102, 168, 42, 254, 159, 0, 104,
0, 46, 128, 28, 96, 9, 232, 6, 206, 130,
212, 97, 159, 104, 104, 46, 174, 156, 124, 105,
225, 238, 200, 76, 86, 181, 254, 247, 0, 70,
128, 50, 224, 21, 136, 15, 38, 132, 26, 227,
75, 9, 247, 70, 198, 178, 210, 245, 157, 135,
41, 162, 158, 249, 168, 66, 254, 177, 128, 116,
96, 39, 104, 26, 174, 139, 60, 103, 81, 234,
188, 79, 49, 244, 20, 71, 79, 114, 180, 37,
183, 91, 54, 187, 86, 243, 126, 197, 224, 83,
8, 61, 198, 145, 146, 236, 109, 141, 237, 165,
141, 187, 37, 179, 91, 53, 251, 87, 3, 126,
129, 224, 96, 72, 40, 54, 158, 150, 232, 110,
206, 172, 84, 125, 255, 97, 128, 40, 96, 30,
168, 8, 126, 134, 160, 98, 248, 41, 130, 158,
225, 168, 72, 126, 182, 160, 118, 248, 38, 194,
154, 209, 171, 28, 127, 73, 224, 54, 200, 22,
214, 142, 222, 228, 88, 75, 122, 183, 99, 54,
169, 214, 254, 222, 192, 88, 80, 58, 188, 19,
49, 205, 212, 85, 159, 127, 40, 32, 30, 152,
8, 106, 134, 175, 34, 252, 25, 129, 202, 224,
87, 8, 62, 134, 144, 98, 236, 41, 141, 222,
229, 152, 75, 42, 183, 95, 54, 184, 22, 242,
142, 197, 164, 83, 59, 125, 211, 97, 157, 232,
105, 142, 174, 228, 124, 75, 97, 247, 104, 70,
174, 178, 252, 117, 129, 231, 32, 74, 152, 55,
42, 150, 159, 46, 232, 28, 78, 137, 244, 102,
199, 106, 210, 175, 29, 188, 9, 177, 198, 244,
82, 199, 125, 146, 161, 173, 184, 125, 178, 161,
181, 184, 119, 50, 166, 149, 186, 239, 51, 12,
21, 197, 207, 19, 20, 13, 207, 69, 148, 51,
47, 85, 220, 63, 25, 208, 10, 220, 7, 25,
194, 138, 209, 167, 28, 122, 137, 227, 38, 201,
218, 214, 219, 30, 219, 72, 91, 118, 187, 102,
243, 106, 197, 239, 19, 12, 13, 197, 197, 147,
19, 45, 205, 221, 149, 153, 175, 42, 252, 31,
1, 200, 0, 86, 128, 62, 224, 16, 72, 12,
54, 133, 214, 227, 30, 201, 200, 86, 214, 190,
222, 240, 88, 68, 58, 179, 83, 53, 253, 215,
1, 158, 128, 104, 96, 46, 168, 28, 126, 137,
224, 102, 200, 42, 214, 159, 30, 232, 8, 78,
134, 180, 98, 247, 105, 134, 174, 226, 252, 73,
129, 246, 224, 70, 200, 50, 214, 149, 158, 239,
40, 76, 30, 181, 200, 119, 22, 166, 142, 250,
228, 67, 11, 113, 199, 100, 82, 171, 125, 191,
97, 176, 40, 116, 30, 167, 72, 122, 182, 163,
54, 249, 214, 194, 222, 209, 152, 92, 106, 185,
239, 50, 204, 21, 149, 207, 47, 20, 28, 15,
73, 196, 54, 211, 86, 221, 254, 217, 128, 90,
224, 59, 8, 19, 70, 141, 242, 229, 133, 139,
35, 39, 89, 218, 186, 219, 51, 27, 85, 203,
127, 23, 96, 14, 168, 4, 126, 131, 96, 97,
232, 40, 78, 158, 180, 104, 119, 110, 166, 172,
122, 253, 227, 1, 137, 192, 102, 208, 42, 220,
31, 25, 200, 10, 214, 135, 30, 226, 136, 73,
166, 182, 250, 246, 195, 6, 209, 194, 220, 81,
153, 252, 106, 193, 239, 16, 76, 12, 53, 197,
215, 19, 30, 141, 200, 101, 150, 171, 46, 255,
92, 64, 57, 240, 18, 196, 13, 147, 69, 173,
243, 61, 133, 209, 163, 28, 121, 201, 226, 214,
201, 158, 214, 232, 94, 206, 184, 84, 114, 191,
101, 176, 43, 52, 31, 87, 72, 62, 182, 144,
118, 236, 38, 205, 218, 213, 155, 31, 43, 72,
31, 118, 136, 38, 230, 154, 202, 235, 23, 15,
78, 132, 52, 99, 87, 105, 254, 174, 192, 124,
80, 33, 252, 24, 65, 202, 176, 87, 52, 62,
151, 80, 110, 188, 44, 113, 221, 228, 89, 139,
122, 231, 99, 10, 169, 199, 62, 210, 144, 93,
172, 57, 189, 210, 241, 157, 132, 105, 163, 110,
249, 236, 66, 205, 241, 149, 132, 111, 35, 108,
25, 237, 202, 205, 151, 21, 174, 143, 60, 100,
17, 235, 76, 79, 117, 244, 39, 7, 90, 130,
187, 33, 179, 88, 117, 250, 167, 3, 58, 129,
211, 32, 93, 216, 57, 154, 146, 235, 45, 143,
93, 164, 57, 187, 82, 243, 125, 133, 225, 163,
8, 121, 198, 162, 210, 249, 157, 130, 233, 161,
142, 248, 100, 66, 171, 113, 191, 100, 112, 43,
100, 31, 107, 72, 47, 118, 156, 38, 233, 218,
206, 219, 20, 91, 79, 123, 116, 35, 103, 89,
234, 186, 207, 51, 20, 21, 207, 79, 20, 52,
15, 87, 68, 62, 179, 80, 117, 252, 39, 1,
218, 128, 91, 32, 59, 88, 19, 122, 141, 227,
37, 137, 219, 38, 219, 90, 219, 123, 27, 99,
75, 105, 247, 110, 198, 172, 82, 253, 253, 129,
129, 160, 96, 120, 40, 34, 158, 153, 168, 106,
254, 175, 0, 124, 0, 33, 192, 24, 80, 10,
188, 7, 49, 194, 148, 81, 175, 124, 124, 33,
225, 216, 72, 90, 182, 187, 54, 243, 86, 197,
254, 211, 0, 93, 192, 57, 144, 18, 236, 13,
141, 197, 165, 147, 59, 45, 211, 93, 157, 249,
169, 130, 254, 225, 128, 72, 96, 54, 168, 22,
254, 142, 192, 100, 80, 43, 124, 31, 97, 200,
40, 86, 158, 190, 232, 112, 78, 164, 52, 123,
87, 99, 126, 169, 224, 126, 200, 32, 86, 152,
62, 234, 144, 79, 44, 52, 29, 215, 73, 158,
182, 232, 118, 206, 166, 212, 122, 223, 99, 24,
41, 202, 158, 215, 40, 94, 158, 184, 104, 114,
174, 165, 188, 123, 49, 227, 84, 73, 255, 118,
192, 38, 208, 26, 220, 11, 25, 199, 74, 210,
183, 29, 182, 137, 182, 230, 246, 202, 198, 215,
18, 222, 141, 152, 101, 170, 171, 63, 63, 80,
16, 60, 12, 17, 197, 204, 83, 21, 253, 207,
1, 148, 0, 111, 64, 44, 48, 29, 212, 9,
159, 70, 232, 50, 206, 149, 148, 111, 47, 108,
28, 45, 201, 221, 150, 217, 174, 218, 252, 91,
1, 251, 64, 67, 112, 49, 228, 20, 75, 79,
119, 116, 38, 167, 90, 250, 187, 3, 51, 65,
213, 240, 95, 4, 56, 3, 82, 129, 253, 160,
65, 184, 48, 114, 148, 37, 175, 91, 60, 59,
81, 211, 124, 93, 225, 249, 136, 66, 230, 177,
138, 244, 103, 7, 106, 130, 175, 33, 188, 24,
113, 202, 164, 87, 59, 126, 147, 96, 109, 232,
45, 142, 157, 164, 105, 187, 110, 243, 108, 69,
237, 243, 13, 133, 197, 163, 19, 57, 205, 210,
213, 157, 159, 41, 168, 30, 254, 136, 64, 102,
176, 42, 244, 31, 7, 72, 2, 182, 129, 182,
224, 118, 200, 38, 214, 154, 222, 235, 24, 79,
74, 180, 55, 55, 86, 150, 190, 238, 240, 76,
68, 53, 243, 87, 5, 254, 131, 0, 97, 192,
40, 80, 30, 188, 8, 113, 198, 164, 82, 251,
125, 131, 97, 161, 232, 120, 78, 162, 180, 121,
183, 98, 246, 169, 134, 254, 226, 192, 73, 144,
54, 236, 22, 205, 206, 213, 148, 95, 47, 120,
28, 34, 137, 217, 166, 218, 250, 219, 3, 27,
65, 203, 112, 87, 100, 62, 171, 80, 127, 124,
32, 33, 216, 24, 90, 138, 187, 39, 51, 90,
149, 251, 47, 3, 92, 1, 249, 192, 66, 208,
49, 156, 20, 105, 207, 110, 212, 44, 95, 93,
248, 57, 130, 146, 225, 173, 136, 125, 166, 161,
186, 248, 115, 2, 165, 193, 187, 16, 115, 76,
37, 245, 219, 7, 27, 66, 139, 113, 167, 100,
122, 171, 99, 63, 105, 208, 46, 220, 28, 89,
201, 250, 214, 195, 30, 209, 200, 92, 86, 185,
254, 242, 192, 69, 144, 51, 44, 21, 221, 207,
25, 148, 10, 239, 71, 12, 50, 133, 213, 163,
31, 57, 200, 18, 214, 141, 158, 229, 168, 75,
62, 183, 80, 118, 188, 38, 241, 218, 196, 91,
19, 123, 77, 227, 117, 137, 231, 38, 202, 154,
215, 43, 30, 159, 72, 104, 54, 174, 150, 252,
110, 193, 236, 80, 77, 252, 53, 129, 215, 32,
94, 152, 56, 106, 146, 175, 45, 188, 29, 177,
201, 180, 86, 247, 126, 198, 160, 82, 248, 61,
130, 145, 161, 172, 120, 125, 226, 161, 137, 184,
102, 242, 170, 197, 191, 19, 48, 13, 212, 5,
159, 67, 40, 49, 222, 148, 88, 111, 122, 172,
35, 61, 217, 209, 154, 220, 107, 25, 239, 74,
204, 55, 21, 214, 143, 30, 228, 8, 75, 70,
183, 114, 246, 165, 134, 251, 34, 195, 89, 145,
250, 236, 67, 13, 241, 197, 132, 83, 35, 125,
217, 225, 154, 200, 107, 22, 175, 78, 252, 52,
65, 215, 112, 94, 164, 56, 123, 82, 163, 125,
185, 225, 178, 200, 117, 150, 167, 46, 250, 156,
67, 41, 241, 222, 196, 88, 83, 122, 189, 227,
49, 137, 212, 102, 223, 106, 216, 47, 26, 156,
11, 41, 199, 94, 210, 184, 93, 178, 185, 181,
178, 247, 53, 134, 151, 34, 238, 153, 140, 106,
229, 239, 11, 12, 7, 69, 194, 179, 17, 181,
204, 119, 21, 230, 143, 10, 228, 7, 11, 66,
135, 113, 162, 164, 121, 187, 98, 243, 105, 133,
238, 227, 12, 73, 197, 246, 211, 6, 221, 194,
217, 145, 154, 236, 107, 13, 239, 69, 140, 51,
37, 213, 219, 31, 27, 72, 11, 118, 135, 102,
226, 170, 201, 191, 22, 240, 14, 196, 4, 83,
67, 125, 241, 225, 132, 72, 99, 118, 169, 230,
254, 202, 192, 87, 16, 62, 140, 16, 101, 204,
43, 21, 223, 79, 24, 52, 10, 151, 71, 46,
178, 156, 117, 169, 231, 62, 202, 144, 87, 44,
62, 157, 208, 105, 156, 46, 233, 220, 78, 217,
244, 90, 199, 123, 18, 163, 77, 185, 245, 178,
199, 53, 146, 151, 45, 174, 157, 188, 105, 177,
238, 244, 76, 71, 117, 242, 167, 5, 186, 131,
51, 33, 213, 216, 95, 26, 184, 11, 50, 135,
85, 162, 191, 57, 176, 18, 244, 13, 135, 69,
162, 179, 57, 181, 210, 247, 29, 134, 137, 162,
230, 249, 138, 194, 231, 17, 138, 140, 103, 37,
234, 155, 15, 43, 68, 31, 115, 72, 37, 246,
155, 6, 235, 66, 207, 113, 148, 36, 111, 91,
108, 59, 109, 211, 109, 157, 237, 169, 141, 190,
229, 176, 75, 52, 55, 87, 86, 190, 190, 240,
112, 68, 36, 51, 91, 85, 251, 127, 3, 96,
1, 232, 0, 78, 128, 52, 96, 23, 104, 14,
174, 132, 124, 99, 97, 233, 232, 78, 206, 180,
84, 119, 127, 102, 160, 42, 248, 31, 2, 136,
1, 166, 128, 122, 224, 35, 8, 25, 198, 138,
210, 231, 29, 138, 137, 167, 38, 250, 154, 195,
43, 17, 223, 76, 88, 53, 250, 151, 3, 46,
129, 220, 96, 89, 232, 58, 206, 147, 20, 109,
207, 109, 148, 45, 175, 93, 188, 57, 177, 210,
244, 93, 135, 121, 162, 162, 249, 185, 130, 242,
225, 133, 136, 99, 38, 169, 218, 254, 219, 0,
91, 64, 59, 112, 19, 100, 13, 235, 69, 143,
115, 36, 37, 219, 91, 27, 123, 75, 99, 119,
105, 230, 174, 202, 252, 87, 1, 254, 128, 64,
96, 48, 40, 20, 30, 143, 72, 100, 54, 171,
86, 255, 126, 192, 32, 80, 24, 60, 10, 145,
199, 44, 82, 157, 253, 169, 129, 190, 224, 112,
72, 36, 54, 155, 86, 235, 126, 207, 96, 84,
40, 63, 94, 144, 56, 108, 18, 173, 205, 189,
149, 177, 175, 52, 124, 23, 97, 206, 168, 84,
126, 191, 96, 112, 40, 36, 30, 155, 72, 107,
118, 175, 102, 252, 42, 193, 223, 16, 88, 12,
58, 133, 211, 35, 29, 217, 201, 154, 214, 235,
30, 207, 72, 84, 54, 191, 86, 240, 62, 196,
16, 83, 76, 61, 245, 209, 135, 28, 98, 137,
233, 166, 206, 250, 212, 67, 31, 113, 200, 36,
86, 155, 126, 235, 96, 79, 104, 52, 46, 151,
92, 110, 185, 236, 114, 205, 229, 149, 139, 47,
39, 92, 26, 185, 203, 50, 215, 85, 158, 191,
40, 112, 30, 164, 8, 123, 70, 163, 114, 249,
229, 130, 203, 33, 151, 88, 110, 186, 172, 115,
61, 229, 209, 139, 28, 103, 73, 234, 182, 207,
54, 212, 22, 223, 78, 216, 52, 90, 151, 123,
46, 163, 92, 121, 249, 226, 194, 201, 145, 150,
236, 110, 205, 236, 85, 141, 255, 37, 128, 27,
32, 11, 88, 7, 122, 130, 163, 33, 185, 216,
114, 218, 165, 155, 59, 43, 83, 95, 125, 248,
33, 130, 152, 97, 170, 168, 127, 62, 160, 16,
120, 12, 34, 133, 217, 163, 26, 249, 203, 2,
215, 65, 158, 176, 104, 116, 46, 167, 92, 122,
185, 227, 50, 201, 213, 150, 223, 46, 216, 28,
90, 137, 251, 38, 195, 90, 209, 251, 28, 67,
73, 241, 246, 196, 70, 211, 114, 221, 229, 153
};
/* ------------------------------------------------------------------------- */
/* This is the new implementation of P- and Q-parity generation.
It is totally unoptimized and thus needs about 50 percent more time than the
old implementation (both with gcc -O2 on AMD 64 bit). Measurements indicate
that about 400 MIPS are needed for 48x CD speed (7.1 MB/s).
*/
static unsigned char burn_rspc_mult(unsigned char a, unsigned char b)
{
if (a == 0 || b == 0)
return 0;
return gfpow[(gflog[a] + gflog[b]) % 255];
}
static unsigned char burn_rspc_div(unsigned char a, unsigned char b)
{
int d;
if (a == 0)
return 0;
if (b == 0)
return -1;
d = gflog[a] - gflog[b];
if (d < 0)
d += 255;
return gfpow[d];
}
static int burn_rspc_p0p1(unsigned char *sector, int col, int msb,
unsigned char *p0, unsigned char *p1)
{
unsigned char *start, b;
unsigned int i, sum_v = 0, hxv = 0;
start = sector + 12 + 2 * col + !!msb;
for(i = 0; i < 24; i++) {
b = start[i * 86];
sum_v ^= b;
hxv ^= burn_rspc_mult(b, gfpow[25 - i]);
}
*p0 = burn_rspc_div(burn_rspc_mult(gfpow[1], sum_v) ^ hxv,
3); /* gfpow[1] ^ gfpow[0]); */
*p1 = sum_v ^ *p0;
return 1;
}
int burn_rspc_parity_p(unsigned char *sector)
{
int i;
unsigned char p0_lsb, p0_msb, p1_lsb, p1_msb;
/* Loop over P columns */
for(i = 0; i < 43; i++) {
burn_rspc_p0p1(sector, i, 0, &p0_lsb, &p1_lsb);
burn_rspc_p0p1(sector, i, 1, &p0_msb, &p1_msb);
sector[2162 + 2 * i] = p0_lsb;
sector[2162 + 2 * i + 1] = p0_msb;
sector[2076 + 2 * i] = p1_lsb;
sector[2076 + 2 * i + 1] = p1_msb;
#ifdef Libburn_with_lec_generatoR
if(verbous) {
printf("p %2d : %2.2X %2.2X ", i,
(unsigned int) p0_lsb, (unsigned int) p0_msb);
printf("%2.2X %2.2X ",
(unsigned int) p1_lsb, (unsigned int) p1_msb);
printf("-> %d,%d\n", 2162 + 2 * i, 2076 + 2 * i);
}
#endif /* Libburn_with_lec_generatoR */
}
return 1 ;
}
static int burn_rspc_q0q1(unsigned char *sector, int diag, int msb,
unsigned char *q0, unsigned char *q1)
{
unsigned char *start, b;
unsigned int i, sum_v = 0, hxv = 0;
start = sector + 12;
for(i = 0; i < 43; i++) {
b = start[(2 * 43 * diag + i * 88 + !!msb) % 2236];
sum_v ^= b;
hxv ^= burn_rspc_mult(b, gfpow[44 - i]);
}
*q0 = burn_rspc_div(burn_rspc_mult(gfpow[1], sum_v) ^ hxv,
3); /* gfpow[1] ^ gfpow[0]); */
*q1 = sum_v ^ *q0;
return 1;
}
int burn_rspc_parity_q(unsigned char *sector)
{
int i;
unsigned char q0_lsb, q0_msb, q1_lsb, q1_msb;
/* Loop over Q diagonals */
for(i = 0; i < 26; i++) {
burn_rspc_q0q1(sector, i, 0, &q0_lsb, &q1_lsb);
burn_rspc_q0q1(sector, i, 1, &q0_msb, &q1_msb);
sector[2300 + 2 * i] = q0_lsb;
sector[2300 + 2 * i + 1] = q0_msb;
sector[2248 + 2 * i] = q1_lsb;
sector[2248 + 2 * i + 1] = q1_msb;
#ifdef Libburn_with_lec_generatoR
if(verbous) {
printf("q %2d : %2.2X %2.2X ", i,
(unsigned int) q0_lsb, (unsigned int) q0_msb);
printf("%2.2X %2.2X ",
(unsigned int) q1_lsb, (unsigned int) q1_msb);
printf("-> %d,%d\n", 2300 + 2 * i, 2248 + 2 * i);
}
#endif /* Libburn_with_lec_generatoR */
}
return 1;
}
/* ------------------------------------------------------------------------- */
/* The new implementation of the ECMA-130 Annex B scrambler.
It is totally unoptimized. One should make use of larger word operations.
Measurements indicate that about 50 MIPS are needed for 48x CD speed.
*/
int burn_ecma130_scramble(unsigned char *sector)
{
int i;
unsigned char *s;
s = sector + 12;
for (i = 0; i < 2340; i++)
s[i] ^= ecma_130_annex_b[i];
return 1;
}
/* ------------------------------------------------------------------------- */
/* The following code is not needed for libburn but rather documents the
origin of the tables above. In libburn it will not be compiled.
*/
#ifdef Libburn_with_lec_generatoR
/* This function produced the content of gflog[] and gfpow[]
*/
static int burn_rspc_setup_tables(void)
{
unsigned int b, l;
memset(gflog, 0, sizeof(gflog));
memset(gfpow, 0, sizeof(gfpow));
b = 1;
for (l = 0; l < 255; l++) {
gfpow[l] = (unsigned char) b;
gflog[b] = (unsigned char) l;
b = b << 1;
if (b & 256)
b = b ^ 0x11d;
}
return 0;
}
/* This function printed the content of gflog[] and gfpow[] as C code
and compared the content with the tables of the old implementation.
*/
static int burn_rspc_print_tables(void)
{
int i;
printf("static unsigned char gfpow[256] = {");
printf("\n\t");
for(i= 0; i < 255; i++) {
printf("%3u, ", gfpow[i]);
#ifdef Libburn_with_old_lec_comparisoN
if(gfpow[i] != gf8_ilog[i])
fprintf(stderr, "*** ILOG %d : %d != %d ***\n", i, gfpow[i], gf8_ilog[i]);
#endif
if((i % 10) == 9)
printf("\n\t");
}
printf("\n};\n\n");
printf("static unsigned char gflog[256] = {");
printf("\n\t");
for(i= 0; i < 256; i++) {
printf(" %3u,", gflog[i]);
#ifdef Libburn_with_old_lec_comparisoN
if(gflog[i] != gf8_log[i])
fprintf(stderr, "*** LOG %d : %d != %d ***\n", i, gflog[i], gf8_log[i]);
#endif
if((i % 10) == 9)
printf("\n\t");
}
printf("\n};\n");
return 0;
}
/* This code was used to generate the content of array ecma_130_annex_b[]
It implements the prescription to use the lowest bit as output, to shift
the bits down by one, to exor the output bit with the next lowest bit,
and to put that exor result into bit 14 of the register.
*/
static unsigned short ecma_130_fsr = 1;
static int next_bit(void)
{
int ret;
ret = ecma_130_fsr & 1;
ecma_130_fsr = (ecma_130_fsr >> 1) & 0x3fff;
if (ret ^ (ecma_130_fsr & 1))
ecma_130_fsr |= 0x4000;
return ret;
}
static int print_ecma_130_scrambler(void)
{
int i, j, b;
ecma_130_fsr = 1;
printf("static unsigned char ecma_130_annex_b[2340] = {");
printf("\n\t");
for (i = 0; i < 2340; i++) {
b = 0;
for (j = 0; j < 8; j++)
b |= next_bit() << j;
printf("%3u, ", b);
if ((i % 10) == 9)
printf("\n\t");
}
printf("\n};\n");
return 1;
}
#endif /* Libburn_with_lec_generatoR */

23
libburn/ecma130ab.h Normal file
View File

@ -0,0 +1,23 @@
/* -*- indent-tabs-mode: t; tab-width: 8; c-basic-offset: 8; -*- */
/* ts A91016 : libburn/ecma130ab.h is the replacement for old libburn/lec.h
Copyright 2009, Thomas Schmitt <scdbackup@gmx.net>, libburnia-project.org
This code module implements the computations prescribed in ECMA-130 Annex A
and B. For explanations of the underlying mathematics see ecma130ab.c .
*/
#ifndef Libburn_ecma130ab_includeD
#define Libburn_ecma130ab_includeD 1
int burn_rspc_parity_p(unsigned char *sector);
int burn_rspc_parity_q(unsigned char *sector);
int burn_ecma130_scramble(unsigned char *sector);
#endif /* ! Libburn_ecma130ab_includeD */

View File

@ -141,19 +141,22 @@ enum burn_write_types
only raw block types are supported
With DVD and BD media: not supported.
ts A90901: THIS HAS BEEN DISABLED because its implementation
ts A90901: This had been disabled because its implementation
relied on code from cdrdao which is not understood
currently.
A burn run will abort with "FATAL" error message
if this mode is attempted.
@since 0.7.2
ts A91016: Re-implemented according to ECMA-130 Annex A and B.
Slower but understood and explained.
@since 0.7.4
*/
BURN_WRITE_RAW,
/** In replies this indicates that not any writing will work.
As parameter for inquiries it indicates that no particular write
mode shall is specified.
Do not use for setting a write mode for burning. It won't work.
Do not use for setting a write mode for burning. It will not work.
*/
BURN_WRITE_NONE
};

View File

@ -21,6 +21,8 @@
#include "libdax_msgs.h"
extern struct libdax_msgs *libdax_messenger;
#include "ecma130ab.h"
#ifdef Libburn_log_in_and_out_streaM
/* <<< ts A61031 */
@ -734,6 +736,57 @@ int sector_headers_is_ok(struct burn_write_opts *o, int mode)
int sector_headers(struct burn_write_opts *o, unsigned char *out,
int mode, int leadin)
{
#ifdef Libburn_ecma130ab_includeD
struct burn_drive *d = o->drive;
unsigned int crc;
int min, sec, frame;
int modebyte = -1;
int ret;
ret = sector_headers_is_ok(o, mode);
if (ret != 2)
return !!ret;
modebyte = 1;
out[0] = 0;
memset(out + 1, 0xFF, 10); /* sync */
out[11] = 0;
if (leadin) {
burn_lba_to_msf(d->rlba, &min, &sec, &frame);
out[12] = dec_to_bcd(min) + 0xA0;
out[13] = dec_to_bcd(sec);
out[14] = dec_to_bcd(frame);
out[15] = modebyte;
} else {
burn_lba_to_msf(d->alba, &min, &sec, &frame);
out[12] = dec_to_bcd(min);
out[13] = dec_to_bcd(sec);
out[14] = dec_to_bcd(frame);
out[15] = modebyte;
}
if (mode & BURN_MODE1) {
crc = crc_32(out, 2064);
out[2064] = crc & 0xFF;
crc >>= 8;
out[2065] = crc & 0xFF;
crc >>= 8;
out[2066] = crc & 0xFF;
crc >>= 8;
out[2067] = crc & 0xFF;
}
if (mode & BURN_MODE1) {
memset(out + 2068, 0, 8);
burn_rspc_parity_p(out);
burn_rspc_parity_q(out);
}
burn_ecma130_scramble(out);
return 1;
#else /* Libburn_ecma130ab_includeD */
int ret;
ret = sector_headers_is_ok(o, mode);
@ -750,8 +803,52 @@ int sector_headers(struct burn_write_opts *o, unsigned char *out,
LIBDAX_MSGS_SEV_FATAL, LIBDAX_MSGS_PRIO_HIGH,
"Raw CD write modes are not supported", 0, 0);
return 0;
#endif /* ! Libburn_ecma130ab_includeD */
}
#if 0
void process_q(struct burn_drive *d, unsigned char *q)
{
unsigned char i[5];
int mode;
mode = q[0] & 0xF;
/* burn_print(12, "mode: %d : ", mode);*/
switch (mode) {
case 1:
/* burn_print(12, "tno = %d : ", q[1]);
burn_print(12, "index = %d\n", q[2]);
*/
/* q[1] is the track number (starting at 1) q[2] is the index
number (starting at 0) */
#warning this is totally bogus
if (q[1] - 1 > 99)
break;
if (q[2] > d->toc->track[q[1] - 1].indices) {
burn_print(12, "new index at %d\n", d->alba);
d->toc->track[q[1] - 1].index[q[2]] = d->alba;
d->toc->track[q[1] - 1].indices++;
}
break;
case 2:
/* XXX dont ignore these */
break;
case 3:
/* burn_print(12, "ISRC data in mode 3 q\n");*/
i[0] = isrc[(q[1] << 2) >> 2];
/* burn_print(12, "0x%x 0x%x 0x%x 0x%x 0x%x\n", q[1], q[2], q[3], q[4], q[5]);
burn_print(12, "ISRC - %c%c%c%c%c\n", i[0], i[1], i[2], i[3], i[4]);
*/
break;
default:
/* ts A61009 : if reactivated then witout Assert */
a ssert(0);
}
}
#endif
/* this needs more info. subs in the data? control/adr? */
@ -766,7 +863,7 @@ int sector_identify(unsigned char *data)
{
/*
scramble(data);
burn_ecma130_scramble(data);
check mode byte for 1 or 2
test parity to see if it's a valid sector
if invalid, return BURN_MODE_AUDIO;