You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2838 lines
71 KiB

/* -*- indent-tabs-mode: t; tab-width: 8; c-basic-offset: 8; -*- */
/* Copyright (c) 2004 - 2006 Derek Foreman, Ben Jansens
Copyright (c) 2006 - 2010 Thomas Schmitt <scdbackup@gmx.net>
Provided under GPL version 2 or later.
*/
#ifdef HAVE_CONFIG_H
#include "../config.h"
#endif
#include <sys/types.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
/* ts A61007 */
/* #include <a ssert.h> */
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <pthread.h>
#include <errno.h>
#include "libburn.h"
#include "init.h"
#include "drive.h"
#include "transport.h"
#include "debug.h"
#include "init.h"
#include "toc.h"
#include "util.h"
#include "sg.h"
#include "structure.h"
/* ts A70107 : to get BE_CANCELLED */
#include "error.h"
/* ts A70219 : for burn_disc_get_write_mode_demands() */
#include "options.h"
/* A70225 : to learn about eventual Libburn_dvd_r_dl_multi_no_close_sessioN */
#include "write.h"
/* A70903 : for burn_scsi_setup_drive() */
#include "spc.h"
/* A90815 : for mmc_obtain_profile_name() */
#include "mmc.h"
#include "libdax_msgs.h"
extern struct libdax_msgs *libdax_messenger;
static struct burn_drive drive_array[255];
static int drivetop = -1;
/* ts A80410 : in init.c */
extern int burn_support_untested_profiles;
/* ts A61021 : the unspecific part of sg.c:enumerate_common()
*/
int burn_setup_drive(struct burn_drive *d, char *fname)
{
d->devname = burn_strdup(fname);
memset(&d->params, 0, sizeof(struct params));
d->idata = NULL;
d->mdata = NULL;
d->toc_entry = NULL;
d->released = 1;
d->stdio_fd = -1;
d->status = BURN_DISC_UNREADY;
d->do_stream_recording = 0;
d->stream_recording_start= 0;
return 1;
}
/* ts A70903 */
void burn_drive_free_subs(struct burn_drive *d)
{
if (d->idata != NULL)
free((void *) d->idata);
d->idata = NULL;
if (d->mdata != NULL) {
burn_mdata_free_subs(d->mdata);
free((void *) d->mdata);
}
d->mdata = NULL;
if(d->toc_entry != NULL)
free((void *) d->toc_entry);
d->toc_entry = NULL;
if (d->devname != NULL)
free(d->devname);
d->devname = NULL;
if (d->stdio_fd >= 0)
close (d->stdio_fd);
d->stdio_fd = -1;
sg_dispose_drive(d, 0);
}
/* ts A60904 : ticket 62, contribution by elmom */
/* splitting former burn_drive_free() (which freed all, into two calls) */
void burn_drive_free(struct burn_drive *d)
{
if (d->global_index == -1)
return;
/* ts A60822 : close open fds before forgetting them */
if (d->drive_role == 1)
if (burn_drive_is_open(d)) {
d->unlock(d);
d->release(d);
}
burn_drive_free_subs(d);
d->global_index = -1;
}
void burn_drive_free_all(void)
{
int i;
for (i = 0; i < drivetop + 1; i++)
burn_drive_free(&(drive_array[i]));
drivetop = -1;
memset(drive_array, 0, sizeof(drive_array));
}
/* ts A60822 */
int burn_drive_is_open(struct burn_drive *d)
{
if (d->drive_role != 1)
return (d->stdio_fd >= 0);
/* ts A61021 : moved decision to sg.c */
return d->drive_is_open(d);
}
/* ts A60906 */
int burn_drive_force_idle(struct burn_drive *d)
{
d->busy = BURN_DRIVE_IDLE;
return 1;
}
/* ts A60906 */
int burn_drive_is_released(struct burn_drive *d)
{
return !!d->released;
}
/* ts A60906 */
/** Inquires drive status in respect to degree of app usage.
@param return -2 = drive is forgotten
-1 = drive is closed (i.e. released explicitely)
0 = drive is open, not grabbed (after scan, before 1st grab)
1 = drive is grabbed but BURN_DRIVE_IDLE
2 = drive is grabbed, synchronous read/write interrupted
10 = drive is grabbing (BURN_DRIVE_GRABBING)
100 = drive is busy in cancelable state
1000 = drive is in non-cancelable state
Expect a monotonous sequence of usage severity to emerge in future.
*/
int burn_drive_is_occupied(struct burn_drive *d)
{
if(d->global_index < 0)
return -2;
if(!burn_drive_is_open(d))
return -1;
if(d->busy == BURN_DRIVE_GRABBING)
return 10;
if(d->released)
return 0;
if(d->busy == BURN_DRIVE_IDLE)
return 1;
if(d->busy == BURN_DRIVE_READING_SYNC ||
d->busy == BURN_DRIVE_WRITING_SYNC)
return 2;
if(d->busy == BURN_DRIVE_WRITING) {
/* ts A70928 */
/* >>> how do i learn whether the writer thread is still
alive ? */;
/* >>> what to do if writer is dead ?
At least sync disc ?*/;
return 50;
}
if(d->busy == BURN_DRIVE_READING) {
return 50;
}
return 1000;
}
/*
void drive_read_lead_in(int dnum)
{
mmc_read_lead_in(&drive_array[dnum], get_4k());
}
*/
unsigned int burn_drive_count(void)
{
return drivetop + 1;
}
/* ts A80801 */
int burn_drive_is_listed(char *path, struct burn_drive **found, int flag)
{
int i, ret;
char drive_adr[BURN_DRIVE_ADR_LEN], off_adr[BURN_DRIVE_ADR_LEN];
ret = burn_drive_convert_fs_adr(path, off_adr);
if (ret <= 0)
strcpy(off_adr, path);
for (i = 0; i <= drivetop; i++) {
if (drive_array[i].global_index < 0)
continue;
ret = burn_drive_d_get_adr(&(drive_array[i]), drive_adr);
if (ret <= 0)
continue;
if(strcmp(off_adr, drive_adr) == 0) {
if (found != NULL)
*found= &(drive_array[i]);
return 1;
}
}
return 0;
}
/* ts A61125 : media status aspects of burn_drive_grab() */
int burn_drive_inquire_media(struct burn_drive *d)
{
/* ts A61225 : after loading the tray, mode page 2Ah can change */
d->getcaps(d);
/* ts A61020 : d->status was set to BURN_DISC_BLANK as pure guess */
/* ts A71128 : run read_disc_info() for any recognizeable profile */
if (d->current_profile > 0 || d->current_is_guessed_profile ||
d->mdata->cdr_write || d->mdata->cdrw_write ||
d->mdata->dvdr_write || d->mdata->dvdram_write) {
#define Libburn_knows_correct_state_after_loaD 1
#ifdef Libburn_knows_correct_state_after_loaD
d->read_disc_info(d);
#else
/* ts A61227 : This repeated read_disc_info seems
to be obsoleted by above d->getcaps(d).
*/
/* ts A60908 */
/* Trying to stabilize the disc status after eventual load
without closing and re-opening the drive */
/* This seems to work for burn_disc_erasable() .
Speed values on RIP-14 and LITE-ON 48125S are stable
and false, nevertheless. */
int was_equal = 0, must_equal = 3, max_loop = 20;
int loop_count, old_speed = -1234567890, new_speed= -987654321;
int old_erasable = -1234567890, new_erasable = -987654321;
fprintf(stderr,"LIBBURN_DEBUG: read_disc_info()\n");
for (loop_count = 0; loop_count < max_loop; loop_count++){
old_speed = new_speed;
old_erasable = new_erasable;
d->read_disc_info(d);
if(d->status == BURN_DISC_UNSUITABLE)
break;
new_speed = burn_drive_get_write_speed(d);
new_erasable = burn_disc_erasable(d);
if (new_speed == old_speed &&
new_erasable == old_erasable) {
was_equal++;
if (was_equal >= must_equal)
break;
} else
was_equal = 0;
/*
if (loop_count >= 1 && was_equal == 0)
*/
fprintf(stderr,"LIBBURN_DEBUG: %d : speed %d:%d erasable %d:%d\n",
loop_count,old_speed,new_speed,old_erasable,new_erasable);
usleep(100000);
}
#endif /* ! Libburn_knows_correct_state_after_loaD */
} else {
if (d->current_profile == -1 || d->current_is_cd_profile)
d->read_toc(d);
/* ts A70314 */
d->status = BURN_DISC_UNSUITABLE;
}
return 1;
}
int burn_drive_grab(struct burn_drive *d, int le)
{
int errcode;
/* ts A61125 - A61202 */
int ret, sose;
if (!d->released) {
burn_print(1, "can't grab - already grabbed\n");
return 0;
}
if(d->drive_role != 1) {
d->released = 0;
if(d->drive_role == 2 || d->drive_role == 3) {
d->status = BURN_DISC_BLANK;
d->current_profile = 0xffff;
} else {
d->status = BURN_DISC_EMPTY;
d->current_profile = 0;
}
d->busy = BURN_DRIVE_IDLE;
return 1;
}
d->status = BURN_DISC_UNREADY;
errcode = d->grab(d);
if (errcode == 0) {
burn_print(1, "low level drive grab failed\n");
return 0;
}
d->busy = BURN_DRIVE_GRABBING;
if (le)
d->load(d);
d->lock(d);
/* ts A61118 */
d->start_unit(d);
/* ts A61202 : gave bit1 of le a meaning */
sose = d->silent_on_scsi_error;
if (!le)
d->silent_on_scsi_error = 1;
/* ts A61125 : outsourced media state inquiry aspects */
ret = burn_drive_inquire_media(d);
d->silent_on_scsi_error = sose;
d->busy = BURN_DRIVE_IDLE;
return ret;
}
/* ts A71015 */
#define Libburn_ticket_62_re_register_is_possiblE 1
struct burn_drive *burn_drive_register(struct burn_drive *d)
{
#ifdef Libburn_ticket_62_re_register_is_possiblE
int i;
#endif
d->block_types[0] = 0;
d->block_types[1] = 0;
d->block_types[2] = 0;
d->block_types[3] = 0;
d->toc_temp = 0;
d->nwa = 0;
d->alba = 0;
d->rlba = 0;
d->cancel = 0;
d->busy = BURN_DRIVE_IDLE;
d->thread_pid = 0;
d->thread_pid_valid = 0;
memset(&(d->thread_tid), 0, sizeof(d->thread_tid));
d->toc_entries = 0;
d->toc_entry = NULL;
d->disc = NULL;
d->erasable = 0;
#ifdef Libburn_ticket_62_re_register_is_possiblE
/* ts A60904 : ticket 62, contribution by elmom */
/* Not yet accepted because no use case seen yet */
/* ts A71015 : xorriso dialog imposes a use case now */
/* This is supposed to find an already freed drive struct among
all the the ones that have been used before */
for (i = 0; i < drivetop + 1; i++)
if (drive_array[i].global_index == -1)
break;
d->global_index = i;
memcpy(&drive_array[i], d, sizeof(struct burn_drive));
pthread_mutex_init(&drive_array[i].access_lock, NULL);
if (drivetop < i)
drivetop = i;
return &(drive_array[i]);
#else /* Libburn_ticket_62_re_register_is_possiblE */
/* old A60904 : */
/* Still active by default */
d->global_index = drivetop + 1;
memcpy(&drive_array[drivetop + 1], d, sizeof(struct burn_drive));
pthread_mutex_init(&drive_array[drivetop + 1].access_lock, NULL);
return &drive_array[++drivetop];
#endif /* ! Libburn_ticket_62_re_register_is_possiblE */
}
/* unregister most recently registered drive */
int burn_drive_unregister(struct burn_drive *d)
{
if(d->global_index != drivetop)
return 0;
burn_drive_free(d);
drivetop--;
return 1;
}
/* ts A61021 : after-setup activities from sg.c:enumerate_common()
*/
struct burn_drive *burn_drive_finish_enum(struct burn_drive *d)
{
struct burn_drive *t;
char msg[BURN_DRIVE_ADR_LEN + 160];
int ret;
d->drive_role = 1; /* MMC drive */
t = burn_drive_register(d);
/* ts A60821 */
mmc_function_spy(NULL, "enumerate_common : -------- doing grab");
/* try to get the drive info */
ret = t->grab(t);
if (ret) {
burn_print(2, "getting drive info\n");
t->getcaps(t);
t->unlock(t);
t->released = 1;
} else {
/* ts A90602 */
d->mdata->valid = -1;
sprintf(msg, "Unable to grab scanned drive %s", d->devname);
libdax_msgs_submit(libdax_messenger, d->global_index,
0x0002016f, LIBDAX_MSGS_SEV_DEBUG,
LIBDAX_MSGS_PRIO_LOW, msg, 0, 0);
burn_drive_unregister(t);
t = NULL;
}
/* ts A60821 */
mmc_function_spy(NULL, "enumerate_common : ----- would release ");
return t;
}
/* ts A61125 : model aspects of burn_drive_release */
int burn_drive_mark_unready(struct burn_drive *d)
{
/* ts A61020 : mark media info as invalid */
d->start_lba= -2000000000;
d->end_lba= -2000000000;
/* ts A61202 */
d->current_profile = -1;
d->current_has_feat21h = 0;
d->current_feat2fh_byte4 = -1;
d->status = BURN_DISC_UNREADY;
if (d->toc_entry != NULL)
free(d->toc_entry);
d->toc_entry = NULL;
d->toc_entries = 0;
if (d->disc != NULL) {
burn_disc_free(d->disc);
d->disc = NULL;
}
if (d->stdio_fd >= 0)
close (d->stdio_fd);
d->stdio_fd = -1;
return 1;
}
/* ts A70918 : outsourced from burn_drive_release() and enhanced */
/** @param flag bit0-2 = mode : 0=unlock , 1=unlock+eject , 2=leave locked
*/
int burn_drive_release_fl(struct burn_drive *d, int flag)
{
if (d->released) {
/* ts A61007 */
/* burn_print(1, "second release on drive!\n"); */
libdax_msgs_submit(libdax_messenger,
d->global_index, 0x00020105,
LIBDAX_MSGS_SEV_SORRY, LIBDAX_MSGS_PRIO_HIGH,
"Drive is already released", 0, 0);
return 0;
}
/* ts A61007 */
/* ts A60906: one should not assume BURN_DRIVE_IDLE == 0 */
/* a ssert(d->busy == BURN_DRIVE_IDLE); */
if (d->busy != BURN_DRIVE_IDLE) {
libdax_msgs_submit(libdax_messenger,
d->global_index, 0x00020106,
LIBDAX_MSGS_SEV_SORRY, LIBDAX_MSGS_PRIO_HIGH,
"Drive is busy on attempt to close", 0, 0);
return 0;
}
if (d->drive_role == 1) {
if (d->needs_sync_cache)
d->sync_cache(d);
if ((flag & 7) != 2)
d->unlock(d);
if ((flag & 7) == 1)
d->eject(d);
burn_drive_snooze(d, 0);
d->release(d);
}
d->needs_sync_cache = 0; /* just to be sure */
d->released = 1;
/* ts A61125 : outsourced model aspects */
burn_drive_mark_unready(d);
return 1;
}
/* API */
/* ts A90824
@param flag bit0= wake up (else start snoozing)
*/
int burn_drive_snooze(struct burn_drive *d, int flag)
{
if (d->drive_role != 1)
return 0;
if (flag & 1)
d->start_unit(d);
else
d->stop_unit(d);
return 1;
}
/* API */
void burn_drive_release(struct burn_drive *d, int le)
{
burn_drive_release_fl(d, !!le);
}
/* ts A70918 */
/* API */
int burn_drive_leave_locked(struct burn_drive *d, int flag)
{
return burn_drive_release_fl(d, 2);
}
/* ts A61007 : former void burn_wait_all() */
/* @param flag bit0= demand freed drives (else released drives) */
int burn_drives_are_clear(int flag)
{
int i;
for (i = burn_drive_count() - 1; i >= 0; --i) {
/* ts A60904 : ticket 62, contribution by elmom */
if (drive_array[i].global_index == -1)
continue;
if (drive_array[i].released && !(flag & 1))
continue;
return 0;
}
return 1;
}
#if 0
void burn_wait_all(void)
{
unsigned int i;
int finished = 0;
struct burn_drive *d;
while (!finished) {
finished = 1;
d = drive_array;
for (i = burn_drive_count(); i > 0; --i, ++d) {
/* ts A60904 : ticket 62, contribution by elmom */
if (d->global_index==-1)
continue;
a ssert(d->released);
}
if (!finished)
sleep(1);
}
}
#endif
void burn_disc_erase_sync(struct burn_drive *d, int fast)
{
/* ts A60924 : libburn/message.c gets obsoleted
burn_message_clear_queue();
*/
burn_print(1, "erasing drive %s %s\n", d->idata->vendor,
d->idata->product);
d->cancel = 0;
#ifdef Libburn_reset_progress_asynC
/* <<< This is now done in async.c */
/* reset the progress */
d->progress.session = 0;
d->progress.sessions = 1;
d->progress.track = 0;
d->progress.tracks = 1;
d->progress.index = 0;
d->progress.indices = 1;
d->progress.start_sector = 0;
d->progress.sectors = 0x10000;
d->progress.sector = 0;
#endif /* Libburn_reset_progress_asynC */
d->erase(d, fast);
d->busy = BURN_DRIVE_ERASING;
/* read the initial 0 stage */
while (!d->test_unit_ready(d) && d->get_erase_progress(d) == 0)
sleep(1);
while ((d->progress.sector = d->get_erase_progress(d)) > 0 ||
!d->test_unit_ready(d))
sleep(1);
d->progress.sector = 0x10000;
/* ts A61125 : update media state records */
burn_drive_mark_unready(d);
if (d->drive_role == 1)
burn_drive_inquire_media(d);
d->busy = BURN_DRIVE_IDLE;
}
/*
@param flag: bit0 = fill formatted size with zeros
bit1, bit2 , bit4, bit5, bit7 - bit15 are for d->format_unit()
*/
void burn_disc_format_sync(struct burn_drive *d, off_t size, int flag)
{
int ret, buf_secs, err, i, stages = 1, pbase, pfill, pseudo_sector;
off_t num_bufs;
char msg[80];
struct buffer buf, *buf_mem = d->buffer;
#ifdef Libburn_reset_progress_asynC
/* <<< This is now done in async.c */
/* reset the progress */
d->progress.session = 0;
d->progress.sessions = 1;
d->progress.track = 0;
d->progress.tracks = 1;
d->progress.index = 0;
d->progress.indices = 1;
d->progress.start_sector = 0;
d->progress.sectors = 0x10000;
d->progress.sector = 0;
#endif /* Libburn_reset_progress_asynC */
stages = 1 + ((flag & 1) && size > 1024 * 1024);
d->cancel = 0;
d->busy = BURN_DRIVE_FORMATTING;
ret = d->format_unit(d, size, flag & 0xfff6); /* forward bits */
if (ret <= 0)
d->cancel = 1;
while (!d->test_unit_ready(d) && d->get_erase_progress(d) == 0)
sleep(1);
while ((pseudo_sector = d->get_erase_progress(d)) > 0 ||
!d->test_unit_ready(d)) {
d->progress.sector = pseudo_sector / stages;
sleep(1);
}
d->sync_cache(d);
if (size <= 0)
goto ex;
/* update media state records */
burn_drive_mark_unready(d);
burn_drive_inquire_media(d);
if (flag & 1) {
/* write size in zeros */;
pbase = 0x8000 + 0x7fff * (stages == 1);
pfill = 0xffff - pbase;
buf_secs = 16; /* Must not be more than 16 */
num_bufs = size / buf_secs / 2048;
if (num_bufs > 0x7fffffff) {
d->cancel = 1;
goto ex;
}
/* <<< */
sprintf(msg,
"Writing %.f sectors of zeros to formatted media",
(double) num_bufs * (double) buf_secs);
libdax_msgs_submit(libdax_messenger, d->global_index,
0x00000002,
LIBDAX_MSGS_SEV_DEBUG, LIBDAX_MSGS_PRIO_ZERO,
msg, 0, 0);
d->buffer = &buf;
memset(d->buffer, 0, sizeof(struct buffer));
d->buffer->bytes = buf_secs * 2048;
d->buffer->sectors = buf_secs;
d->busy = BURN_DRIVE_WRITING;
for (i = 0; i < num_bufs; i++) {
d->nwa = i * buf_secs;
err = d->write(d, d->nwa, d->buffer);
if (err == BE_CANCELLED || d->cancel) {
d->cancel = 1;
break;
}
d->progress.sector = pbase
+ pfill * ((double) i / (double) num_bufs);
}
d->sync_cache(d);
if (d->current_profile == 0x13 || d->current_profile == 0x1a) {
/* DVD-RW or DVD+RW */
d->busy = BURN_DRIVE_CLOSING_SESSION;
/* CLOSE SESSION, 010b */
d->close_track_session(d, 1, 0);
d->busy = BURN_DRIVE_WRITING;
}
}
ex:;
d->progress.sector = 0x10000;
d->busy = BURN_DRIVE_IDLE;
d->buffer = buf_mem;
}
/* ts A70112 API */
int burn_disc_get_formats(struct burn_drive *d, int *status, off_t *size,
unsigned *bl_sas, int *num_formats)
{
int ret;
*status = 0;
*size = 0;
*bl_sas = 0;
*num_formats = 0;
if (d->drive_role != 1)
return 0;
ret = d->read_format_capacities(d, 0x00);
if (ret <= 0)
return 0;
*status = d->format_descr_type;
*size = d->format_curr_max_size;
*bl_sas = d->format_curr_blsas;
*num_formats = d->num_format_descr;
return 1;
}
/* ts A70112 API */
int burn_disc_get_format_descr(struct burn_drive *d, int index,
int *type, off_t *size, unsigned *tdp)
{
*type = 0;
*size = 0;
*tdp = 0;
if (index < 0 || index >= d->num_format_descr)
return 0;
*type = d->format_descriptors[index].type;
*size = d->format_descriptors[index].size;
*tdp = d->format_descriptors[index].tdp;
return 1;
}
enum burn_disc_status burn_disc_get_status(struct burn_drive *d)
{
/* ts A61007 */
/* a ssert(!d->released); */
if (d->released) {
libdax_msgs_submit(libdax_messenger,
d->global_index, 0x00020108,
LIBDAX_MSGS_SEV_SORRY, LIBDAX_MSGS_PRIO_HIGH,
"Drive is not grabbed on disc status inquiry",
0, 0);
return BURN_DISC_UNGRABBED;
}
return d->status;
}
int burn_disc_erasable(struct burn_drive *d)
{
return d->erasable;
}
enum burn_drive_status burn_drive_get_status(struct burn_drive *d,
struct burn_progress *p)
{
/* --- Part of asynchronous signal handling --- */
/* This frequently used call may be used to react on messages from
the libburn built-in signal handler.
*/
/* ts B00225 :
If aborting with action 2:
catch control thread after it returned from signal handler.
Let it run burn_abort(4440,...)
*/
burn_init_catch_on_abort(0);
/* ts A70928 : inform control thread of signal in sub-threads */
if (burn_builtin_triggered_action < 2 && burn_global_abort_level > 0)
burn_global_abort_level++;
if (burn_builtin_triggered_action < 2 && burn_global_abort_level > 5) {
if (burn_global_signal_handler == NULL)
kill(getpid(), burn_global_abort_signum);
else
(*burn_global_signal_handler)
(burn_global_signal_handle,
burn_global_abort_signum, 0);
burn_global_abort_level = -1;
}
/* --- End of asynchronous signal handling --- */
if (p != NULL) {
memcpy(p, &(d->progress), sizeof(struct burn_progress));
/* TODO: add mutex */
}
return d->busy;
}
int burn_drive_set_stream_recording(struct burn_drive *d, int recmode,
int start, int flag)
{
if (recmode == 1)
d->do_stream_recording = 1;
else if (recmode == -1)
d->do_stream_recording = 0;
d->stream_recording_start = start;
return(1);
}
void burn_drive_cancel(struct burn_drive *d)
{
/* ts B00225 : these mutexes are unnecessary because "= 1" is atomar.
pthread_mutex_lock(&d->access_lock);
*/
d->cancel = 1;
/*
pthread_mutex_unlock(&d->access_lock);
*/
}
/* ts A61007 : defunct because unused */
#if 0
int burn_drive_get_block_types(struct burn_drive *d,
enum burn_write_types write_type)
{
burn_print(12, "write type: %d\n", write_type);
a ssert( /* (write_type >= BURN_WRITE_PACKET) && */
(write_type <= BURN_WRITE_RAW));
return d->block_types[write_type];
}
#endif
static void strip_spaces(char *str)
{
char *tmp;
tmp = str + strlen(str) - 1;
while (isspace(*tmp))
*(tmp--) = '\0';
tmp = str;
while (*tmp) {
if (isspace(*tmp) && isspace(*(tmp + 1))) {
char *tmp2;
for (tmp2 = tmp + 1; *tmp2; ++tmp2)
*(tmp2 - 1) = *tmp2;
*(tmp2 - 1) = '\0';
} else
++tmp;
}
}
static int drive_getcaps(struct burn_drive *d, struct burn_drive_info *out)
{
struct burn_scsi_inquiry_data *id;
/* ts A61007 : now prevented in enumerate_common() */
#if 0
a ssert(d->idata);
a ssert(d->mdata);
#endif
if(d->idata->valid <= 0 || d->mdata->valid <= 0)
return 0;
id = (struct burn_scsi_inquiry_data *)d->idata;
memcpy(out->vendor, id->vendor, sizeof(id->vendor));
strip_spaces(out->vendor);
memcpy(out->product, id->product, sizeof(id->product));
strip_spaces(out->product);
memcpy(out->revision, id->revision, sizeof(id->revision));
strip_spaces(out->revision);
strncpy(out->location, d->devname, 16);
out->location[16] = '\0';
out->buffer_size = d->mdata->buffer_size;
out->read_dvdram = !!d->mdata->dvdram_read;
out->read_dvdr = !!d->mdata->dvdr_read;
out->read_dvdrom = !!d->mdata->dvdrom_read;
out->read_cdr = !!d->mdata->cdr_read;
out->read_cdrw = !!d->mdata->cdrw_read;
out->write_dvdram = !!d->mdata->dvdram_write;
out->write_dvdr = !!d->mdata->dvdr_write;
out->write_cdr = !!d->mdata->cdr_write;
out->write_cdrw = !!d->mdata->cdrw_write;
out->write_simulate = !!d->mdata->simulate;
out->c2_errors = !!d->mdata->c2_pointers;
out->drive = d;
#ifdef Libburn_dummy_probe_write_modeS
/* ts A91112 */
/* Set default block types. The call d->probe_write_modes() is quite
obtrusive. It may be performed explicitely by new API call
burn_drive_probe_cd_write_modes().
*/
if (out->write_dvdram || out->write_dvdr ||
out->write_cdrw || out->write_cdr) {
out->tao_block_types = d->block_types[BURN_WRITE_TAO] =
BURN_BLOCK_MODE1 | BURN_BLOCK_RAW0;
out->sao_block_types = d->block_types[BURN_WRITE_SAO] =
BURN_BLOCK_SAO;
} else {
out->tao_block_types = d->block_types[BURN_WRITE_TAO] = 0;
out->sao_block_types = d->block_types[BURN_WRITE_SAO] = 0;
}
out->raw_block_types = d->block_types[BURN_WRITE_RAW] = 0;
out->packet_block_types = 0;
#else /* Libburn_dummy_probe_write_modeS */
/* update available block types for burners */
if (out->write_dvdram || out->write_dvdr ||
out->write_cdrw || out->write_cdr)
d->probe_write_modes(d);
out->tao_block_types = d->block_types[BURN_WRITE_TAO];
out->sao_block_types = d->block_types[BURN_WRITE_SAO];
out->raw_block_types = d->block_types[BURN_WRITE_RAW];
out->packet_block_types = d->block_types[BURN_WRITE_PACKET];
#endif /* ! Libburn_dummy_probe_write_modeS */
return 1;
}
/* ts A91112 - B00114 API */
/* Probe available CD write modes and block types.
*/
int burn_drive_probe_cd_write_modes(struct burn_drive_info *dinfo)
{
struct burn_drive *d = dinfo->drive;
if (d == NULL)
return 0;
if (dinfo->write_dvdram || dinfo->write_dvdr ||
dinfo->write_cdrw || dinfo->write_cdr)
d->probe_write_modes(d);
dinfo->tao_block_types = d->block_types[BURN_WRITE_TAO];
dinfo->sao_block_types = d->block_types[BURN_WRITE_SAO];
dinfo->raw_block_types = d->block_types[BURN_WRITE_RAW];
dinfo->packet_block_types = d->block_types[BURN_WRITE_PACKET];
return 1;
}
/* ts A70907 : added parameter flag */
/* @param flag bit0= reset global drive list */
int burn_drive_scan_sync(struct burn_drive_info *drives[],
unsigned int *n_drives, int flag)
{
/* ts A70907 :
There seems to have been a misunderstanding about the role of
burn_drive_scan_sync(). It needs no static state because it
is only started once during an asynchronous scan operation.
Its starter, burn_drive_scan(), is the one which ends immediately
and gets called repeatedly. It acts on start of scanning by
calling burn_drive_scan_sync(), returns idle while scanning is
not done and finally removes the worker object which represented
burn_drive_scan_sync().
The scanning itself is not parallel but enumerates sequentially
drive by drive (within scsi_enumerate_drives()).
I will use "scanned" for marking drives found by previous runs.
It will not be static any more.
*/
/* ts A71015 : this makes only trouble : static int scanning = 0; */
/* ts A70907 :
These variables are too small anyway. We got up to 255 drives.
static int scanned = 0, found = 0;
Variable "found" was only set but never read.
*/
unsigned char scanned[32];
unsigned count = 0;
int i, ret;
/* ts A61007 : moved up to burn_drive_scan() */
/* a ssert(burn_running); */
/* ts A61007 : test moved up to burn_drive_scan()
burn_wait_all() is obsoleted */
#if 0
/* make sure the drives aren't in use */
burn_wait_all(); /* make sure the queue cleans up
before checking for the released
state */
#endif /* 0 */
*n_drives = 0;
/* ts A70907 : wether to scan from scratch or to extend */
for (i = 0; i < sizeof(scanned); i++)
scanned[i] = 0;
if (flag & 1) {
burn_drive_free_all();
} else {
for (i = 0; i <= drivetop; i++)
if (drive_array[i].global_index >= 0)
scanned[i / 8] |= (1 << (i % 8));
}
/* refresh the lib's drives */
/* ts A61115 : formerly sg_enumerate(); ata_enumerate(); */
scsi_enumerate_drives();
count = burn_drive_count();
if (count) {
/* ts A70907 :
Extra array element marks end of array. */
*drives = calloc(count + 1,
sizeof(struct burn_drive_info));
if (*drives == NULL) {
libdax_msgs_submit(libdax_messenger, -1, 0x00000003,
LIBDAX_MSGS_SEV_FATAL,
LIBDAX_MSGS_PRIO_HIGH,
"Out of virtual memory", 0, 0);
return -1;
} else
for (i = 0; i <= count; i++) /* invalidate */
(*drives)[i].drive = NULL;
} else
*drives = NULL;
for (i = 0; i < count; ++i) {
if (scanned[i / 8] & (1 << (i % 8)))
continue; /* device already scanned by previous run */
if (drive_array[i].global_index < 0)
continue; /* invalid device */
/* ts A90602 : This old loop is not plausible. See A70907.
while (!drive_getcaps(&drive_array[i],
&(*drives)[*n_drives])) {
sleep(1);
}
*/
/* ts A90602 : A single call shall do (rather than a loop) */
ret = drive_getcaps(&drive_array[i], &(*drives)[*n_drives]);
if (ret > 0)
(*n_drives)++;
scanned[i / 8] |= 1 << (i % 8);
}
if (*drives != NULL && *n_drives == 0) {
free ((char *) *drives);
*drives = NULL;
}
return(1);
}
/* ts A61001 : internal call */
int burn_drive_forget(struct burn_drive *d, int force)
{
int occup;
occup = burn_drive_is_occupied(d);
/*
fprintf(stderr, "libburn: experimental: occup == %d\n",occup);
*/
if(occup <= -2)
return 2;
if(occup > 0)
if(force < 1)
return 0;
if(occup > 10)
return 0;
/* >>> do any drive calming here */;
burn_drive_force_idle(d);
if(occup > 0 && !burn_drive_is_released(d))
burn_drive_release(d,0);
burn_drive_free(d);
return 1;
}
/* API call */
int burn_drive_info_forget(struct burn_drive_info *info, int force)
{
return burn_drive_forget(info->drive, force);
}
void burn_drive_info_free(struct burn_drive_info drive_infos[])
{
int i;
/* ts A60904 : ticket 62, contribution by elmom */
/* clarifying the meaning and the identity of the victim */
if(drive_infos == NULL)
return;
#ifndef Libburn_free_all_drives_on_infO
#ifdef Not_yeT
int new_drivetop;
/* ts A71015: compute reduced drivetop counter */
new_drivetop = drivetop;
for (i = 0; drive_infos[i].drive != NULL; i++)
if (drive_infos[i].global_index == new_drivetop
&& new_drivetop >= 0) {
new_drivetop--;
i = 0;
}
#endif /* Not_yeT */
/* ts A70907 : Solution for wrong behavior below */
for (i = 0; drive_infos[i].drive != NULL; i++)
burn_drive_free(drive_infos[i].drive);
#ifdef Not_yeT
drivetop = new_drivetop;
#endif /* Not_yeT */
#endif /* ! Libburn_free_all_drives_on_infO */
/* ts A60904 : This looks a bit weird. [ts A70907 : not any more]
burn_drive_info is not the manager of burn_drive but only its
spokesperson. To my knowlege drive_infos from burn_drive_scan()
are not memorized globally. */
free((void *) drive_infos);
#ifdef Libburn_free_all_drives_on_infO
/* ts A70903 : THIS IS WRONG ! (disabled now)
It endangers multi drive usage.
This call is not entitled to delete all drives, only the
ones of the array which it recieves a parmeter.
Problem: It was unclear how many items are listed in drive_infos
Solution: Added a end marker element to any burn_drive_info array
The mark can be recognized by having drive == NULL
*/
burn_drive_free_all();
#endif
}
struct burn_disc *burn_drive_get_disc(struct burn_drive *d)
{
/* ts A61022: SIGSEGV on calling this function with blank media */
if(d->disc == NULL)
return NULL;
d->disc->refcnt++;
return d->disc;
}
void burn_drive_set_speed(struct burn_drive *d, int r, int w)
{
d->nominal_write_speed = w;
if(d->drive_role != 1)
return;
d->set_speed(d, r, w);
}
/* ts A70711 API function */
int burn_drive_set_buffer_waiting(struct burn_drive *d, int enable,
int min_usec, int max_usec, int timeout_sec,
int min_percent, int max_percent)
{
if (enable >= 0)
d->wait_for_buffer_free = !!enable;
if (min_usec >= 0)
d->wfb_min_usec = min_usec;
if (max_usec >= 0)
d->wfb_max_usec = max_usec;
if (timeout_sec >= 0)
d->wfb_timeout_sec = timeout_sec;
if (min_percent >= 0) {
if (min_percent < 25 || min_percent > 100)
return 0;
d->wfb_min_percent = min_percent;
}
if (max_percent >= 0) {
if (max_percent < 25 || max_percent > 100)
return 0;
d->wfb_max_percent = max_percent;
}
return 1;
}
int burn_msf_to_sectors(int m, int s, int f)
{
return (m * 60 + s) * 75 + f;
}
void burn_sectors_to_msf(int sectors, int *m, int *s, int *f)
{
*m = sectors / (60 * 75);
*s = (sectors - *m * 60 * 75) / 75;
*f = sectors - *m * 60 * 75 - *s * 75;
}
int burn_drive_get_read_speed(struct burn_drive *d)
{
if(d->mdata->valid <= 0)
return 0;
return d->mdata->max_read_speed;
}
int burn_drive_get_write_speed(struct burn_drive *d)
{
if(d->mdata->valid <= 0)
return 0;
return d->mdata->max_write_speed;
}
/* ts A61021 : New API function */
int burn_drive_get_min_write_speed(struct burn_drive *d)
{
if(d->mdata->valid <= 0)
return 0;
return d->mdata->min_write_speed;
}
/* ts A51221 */
static char *enumeration_whitelist[BURN_DRIVE_WHITELIST_LEN];
static int enumeration_whitelist_top = -1;
/** Add a device to the list of permissible drives. As soon as some entry is in
the whitelist all non-listed drives are banned from enumeration.
@return 1 success, <=0 failure
*/
int burn_drive_add_whitelist(char *device_address)
{
char *new_item;
if(enumeration_whitelist_top+1 >= BURN_DRIVE_WHITELIST_LEN)
return 0;
enumeration_whitelist_top++;
new_item = calloc(1, strlen(device_address) + 1);
if (new_item == NULL)
return -1;
strcpy(new_item, device_address);
enumeration_whitelist[enumeration_whitelist_top] = new_item;
return 1;
}
/** Remove all drives from whitelist. This enables all possible drives. */
void burn_drive_clear_whitelist(void)
{
int i;
for (i = 0; i <= enumeration_whitelist_top; i++)
free(enumeration_whitelist[i]);
enumeration_whitelist_top = -1;
}
int burn_drive_is_banned(char *device_address)
{
int i;
if(enumeration_whitelist_top<0)
return 0;
for (i = 0; i <= enumeration_whitelist_top; i++)
if (strcmp(enumeration_whitelist[i], device_address) == 0)
return 0;
return 1;
}
/* ts A80731 */
int burn_drive_whitelist_count(void)
{
return enumeration_whitelist_top + 1;
}
char *burn_drive_whitelist_item(int idx, int flag)
{
if (idx < 0 || idx > enumeration_whitelist_top)
return NULL;
return enumeration_whitelist[idx];
}
/* ts A70924 */
int burn_drive__fd_from_special_adr(char *adr)
{
int fd = -1, i;
if (strcmp(adr, "-") == 0)
fd = 1;
if(strncmp(adr, "/dev/fd/", 8) == 0) {
for (i = 8; adr[i]; i++)
if (!isdigit(adr[i]))
break;
if (i> 8 && adr[i] == 0)
fd = atoi(adr + 8);
}
return fd;
}
/* ts A70903 : Implements adquiration of pseudo drives */
int burn_drive_grab_dummy(struct burn_drive_info *drive_infos[], char *fname)
{
int ret = -1, fd = -1, role = 0;
int is_block_dev = 0;
/* divided by 512 it needs to fit into a signed long integer */
off_t size = ((off_t) (512 * 1024 * 1024 - 1) * (off_t) 2048);
off_t read_size = -1;
struct burn_drive *d= NULL, *regd_d;
struct stat stbuf;
static int allow_role_3 = 1;
if (fname[0] != 0) {
memset(&stbuf, 0, sizeof(stbuf));
fd = burn_drive__fd_from_special_adr(fname);
if (fd >= 0)
ret = fstat(fd, &stbuf);
else
ret = stat(fname, &stbuf);
if (ret != -1) {
is_block_dev = burn_os_is_2k_seekrw(fname, 0);
if (S_ISREG(stbuf.st_mode))
read_size = stbuf.st_size;
else if (is_block_dev) {
ret = burn_os_stdio_capacity(fname,
&read_size);
if (ret <= 0)
read_size = (off_t) 0x7ffffff0 *
(off_t) 2048;
}
}
if (ret == -1 || is_block_dev || S_ISREG(stbuf.st_mode)) {
ret = burn_os_stdio_capacity(fname, &size);
if (ret == -1) {
libdax_msgs_submit(libdax_messenger, -1,
0x00020009,
LIBDAX_MSGS_SEV_SORRY, LIBDAX_MSGS_PRIO_HIGH,
"Neither stdio-path nor its directory exist",
0, 0);
return 0;
} else if (ret == -2) {
libdax_msgs_submit(libdax_messenger, -1,
0x00020005,
LIBDAX_MSGS_SEV_SORRY, LIBDAX_MSGS_PRIO_HIGH,
"Failed to open device (a pseudo-drive)",
errno, 0);
return 0;
}
if (fname[0] != 0)
role = 2;
else
role = 0;
} else {
if(S_ISDIR(stbuf.st_mode) || !allow_role_3) {
libdax_msgs_submit(libdax_messenger, -1,
0x00020149,
LIBDAX_MSGS_SEV_SORRY, LIBDAX_MSGS_PRIO_HIGH,
"Unsuitable filetype for pseudo-drive", 0, 0);
return 0;
}
role = 3;
}
}
d= (struct burn_drive *) calloc(1, sizeof(struct burn_drive));
if (d == NULL)
return 0;
burn_setup_drive(d, fname);
d->status = BURN_DISC_EMPTY;
d->drive_role = role;
ret = burn_scsi_setup_drive(d, -1, -1, -1, -1, -1, 0);
if (ret <= 0)
goto ex;
regd_d = burn_drive_register(d);
if (regd_d == NULL) {
ret = -1;
goto ex;
}
free((char *) d); /* all sub pointers have been copied to *regd_d */
d = regd_d;
if (d->drive_role == 2 || d->drive_role == 3) {
d->status = BURN_DISC_BLANK;
d->current_profile = 0xffff; /* MMC for non-compliant drive */
strcpy(d->current_profile_text,"stdio file");
d->current_is_cd_profile = 0;
d->current_is_supported_profile = 1;
d->block_types[BURN_WRITE_TAO] = BURN_BLOCK_MODE1;
d->block_types[BURN_WRITE_SAO] = BURN_BLOCK_SAO;
if (read_size >= 0)
/* despite its name : last valid address, not size */
d->media_read_capacity =
read_size / 2048 - !(read_size % 2048);
burn_drive_set_media_capacity_remaining(d, size);
/* >>> ? open file for a test ? (>>> beware of "-" = stdin) */;
} else
d->current_profile = 0; /* Drives return this if empty */
*drive_infos = calloc(2, sizeof(struct burn_drive_info));
if (*drive_infos == NULL)
goto ex;
(*drive_infos)[0].drive = d;
(*drive_infos)[1].drive = NULL; /* End-Of-List mark */
(*drive_infos)[0].tao_block_types = d->block_types[BURN_WRITE_TAO];
(*drive_infos)[0].sao_block_types = d->block_types[BURN_WRITE_SAO];
if (d->drive_role == 2) {
strcpy((*drive_infos)[0].vendor,"YOYODYNE");
strcpy((*drive_infos)[0].product,"WARP DRIVE");
strcpy((*drive_infos)[0].revision,"FX01");
} else if (d->drive_role == 3) {
strcpy((*drive_infos)[0].vendor,"YOYODYNE");
strcpy((*drive_infos)[0].product,"BLACKHOLE");
strcpy((*drive_infos)[0].revision,"FX02");
} else {
strcpy((*drive_infos)[0].vendor,"FERENGI");
strcpy((*drive_infos)[0].product,"VAPORWARE");
strcpy((*drive_infos)[0].revision,"0000");
}
d->released = 0;
ret = 1;
ex:;
if (ret <= 0 && d != NULL) {
burn_drive_free_subs(d);
free((char *) d);
}
return ret;
}
/* ts A60823 */
/** Aquire a drive with known persistent address.
*/
int burn_drive_scan_and_grab(struct burn_drive_info *drive_infos[], char* adr,
int load)
{
unsigned int n_drives;
int ret, i;
/* check wether drive adress is already registered */
for (i = 0; i <= drivetop; i++)
if (drive_array[i].global_index >= 0)
if (strcmp(drive_array[i].devname, adr) == 0)
break;
if (i <= drivetop) {
libdax_msgs_submit(libdax_messenger, i,
0x0002014b,
LIBDAX_MSGS_SEV_SORRY, LIBDAX_MSGS_PRIO_HIGH,
"Drive is already registered resp. scanned",
0, 0);
return -1;
}
if (strncmp(adr, "stdio:", 6) == 0) {
ret = burn_drive_grab_dummy(drive_infos, adr + 6);
return ret;
}
burn_drive_clear_whitelist();
burn_drive_add_whitelist(adr);
/*
fprintf(stderr,"libburn: experimental: burn_drive_scan_and_grab(%s)\n",
adr);
*/
/* ts A70907 : now calling synchronously rather than looping */
ret = burn_drive_scan_sync(drive_infos, &n_drives, 0);
if (ret < 0)
return -1;
if (n_drives <= 0)
return 0;
/*
fprintf(stderr, "libburn: experimental: n_drives %d , drivetop %d\n",
n_drives, drivetop);
if (n_drives > 0)
fprintf(stderr, "libburn: experimental: global_index %d\n",
drive_infos[0]->drive->global_index);
*/
ret = burn_drive_grab(drive_infos[0]->drive, load);
if (ret != 1)
return -1;
return 1;
}
/* ts A60925 */
/** Simple debug message frontend to libdax_msgs_submit().
If arg is not NULL, then fmt MUST contain exactly one %s and no
other sprintf() %-formatters.
*/
int burn_drive_adr_debug_msg(char *fmt, char *arg)
{
int ret;
char msg[4096], *msgpt;
msgpt= msg;
if(arg != NULL)
sprintf(msg, fmt, arg);
else
msgpt= fmt;
if(libdax_messenger == NULL)
return 0;
ret = libdax_msgs_submit(libdax_messenger, -1, 0x00000002,
LIBDAX_MSGS_SEV_DEBUG, LIBDAX_MSGS_PRIO_ZERO,
msgpt, 0, 0);
return ret;
}
/* ts A60923 */ /* ts A70906 : promoted to API */
/** Inquire the persistent address of the given drive. */
int burn_drive_d_get_adr(struct burn_drive *d, char adr[])
{
if (strlen(d->devname) >= BURN_DRIVE_ADR_LEN) {
libdax_msgs_submit(libdax_messenger, d->global_index,
0x00020110,
LIBDAX_MSGS_SEV_FATAL, LIBDAX_MSGS_PRIO_HIGH,
"Persistent drive address too long", 0, 0);
return -1;
}
strcpy(adr,d->devname);
return 1;
}
/* ts A60823 - A60923 */ /* A70906 : Now legacy API call */
/** Inquire the persistent address of the given drive. */
int burn_drive_get_adr(struct burn_drive_info *drive_info, char adr[])
{
int ret;
ret = burn_drive_d_get_adr(drive_info->drive, adr);
return ret;
}
/* ts A60922 ticket 33 */
/** Evaluate wether the given address would be enumerated by libburn */
int burn_drive_is_enumerable_adr(char *adr)
{
return sg_is_enumerable_adr(adr);
}
#define BURN_DRIVE_MAX_LINK_DEPTH 20
/* ts A60922 ticket 33 */
/* @param flag bit0= no debug messages
bit1= resolve only links,
do not rely on drive list for resolving via st_rdev
*/
int burn_drive_resolve_link(char *path, char adr[], int *recursion_count,
int flag)
{
int ret;
char link_target[4096], msg[4096+100], link_adr[4096], *adrpt;
struct stat stbuf;
if (flag & 1)
burn_drive_adr_debug_msg("burn_drive_resolve_link( %s )",
path);
if (*recursion_count >= BURN_DRIVE_MAX_LINK_DEPTH) {
if (flag & 1)
burn_drive_adr_debug_msg(
"burn_drive_resolve_link aborts because link too deep",
NULL);
return 0;
}
(*recursion_count)++;
ret = readlink(path, link_target, sizeof(link_target));
if (ret == -1) {
if (flag & 1)
burn_drive_adr_debug_msg("readlink( %s ) returns -1",
path);
return 0;
}
if (ret >= sizeof(link_target) - 1) {
sprintf(msg,"readlink( %s ) returns %d (too much)", path, ret);
if (flag & 1)
burn_drive_adr_debug_msg(msg, NULL);
return -1;
}
link_target[ret] = 0;
adrpt= link_target;
if (link_target[0] != '/') {
strcpy(link_adr, path);
if ((adrpt = strrchr(link_adr, '/')) != NULL) {
strcpy(adrpt + 1, link_target);
adrpt = link_adr;
} else
adrpt = link_target;
}
if (flag & 2) {
/* Link-only recursion */
if (lstat(adrpt, &stbuf) == -1) {
;
} else if((stbuf.st_mode & S_IFMT) == S_IFLNK) {
ret = burn_drive_resolve_link(adrpt, adr,
recursion_count, flag);
} else {
strcpy(adr, adrpt);
}
} else {
/* Link and device number recursion */
ret = burn_drive_convert_fs_adr_sub(adrpt, adr,
recursion_count);
sprintf(msg,"burn_drive_convert_fs_adr( %s ) returns %d",
link_target, ret);
}
if (flag & 1)
burn_drive_adr_debug_msg(msg, NULL);
return ret;
}
/* ts A60922 - A61014 ticket 33 */
/* Try to find an enumerated address with the given stat.st_rdev number */
int burn_drive_find_devno(dev_t devno, char adr[])
{
char fname[4096], msg[4096+100];
int ret = 0, first = 1;
struct stat stbuf;
burn_drive_enumerator_t enm;
while (1) {
ret = sg_give_next_adr(&enm, fname, sizeof(fname), first);
if(ret <= 0)
break;
first = 0;
ret = stat(fname, &stbuf);
if(ret == -1)
continue;
if(devno != stbuf.st_rdev)
continue;
if(strlen(fname) >= BURN_DRIVE_ADR_LEN)
return -1;
sprintf(msg, "burn_drive_find_devno( 0x%lX ) found %s",
(long) devno, fname);
burn_drive_adr_debug_msg(msg, NULL);
strcpy(adr, fname);
{ ret = 1; goto ex;}
}
ret = 0;
ex:;
if (first == 0)
sg_give_next_adr(&enm, fname, sizeof(fname), -1);
return ret;
}
/* ts A60923 */
/** Try to obtain host,channel,target,lun from path.
@return 1 = success , 0 = failure , -1 = severe error
*/
int burn_drive_obtain_scsi_adr(char *path,
int *bus_no, int *host_no, int *channel_no,
int *target_no, int *lun_no)
{
int ret, i;
char adr[BURN_DRIVE_ADR_LEN];
/* open drives cannot be inquired by sg_obtain_scsi_adr() */
for (i = 0; i < drivetop + 1; i++) {
if (drive_array[i].global_index < 0)
continue;
ret = burn_drive_d_get_adr(&(drive_array[i]),adr);
if (ret < 0)
return -1;
if (ret == 0)
continue;
if (strcmp(adr, path) == 0) {
*host_no = drive_array[i].host;
*channel_no = drive_array[i].channel;
*target_no = drive_array[i].id;
*lun_no = drive_array[i].lun;
*bus_no = drive_array[i].bus_no;
if (*host_no < 0 || *channel_no < 0 ||
*target_no < 0 || *lun_no < 0)
return 0;
return 1;
}
}
ret = sg_obtain_scsi_adr(path, bus_no, host_no, channel_no,
target_no, lun_no);
return ret;
}
/* ts A60923 */
int burn_drive_convert_scsi_adr(int bus_no, int host_no, int channel_no,
int target_no, int lun_no, char adr[])
{
char fname[4096],msg[4096+100];
int ret = 0, first = 1, i_bus_no = -1;
int i_host_no = -1, i_channel_no = -1, i_target_no = -1, i_lun_no = -1;
burn_drive_enumerator_t enm;
sprintf(msg,"burn_drive_convert_scsi_adr( %d,%d,%d,%d,%d )",
bus_no, host_no, channel_no, target_no, lun_no);
burn_drive_adr_debug_msg(msg, NULL);
while (1) {
ret= sg_give_next_adr(&enm, fname, sizeof(fname), first);
if(ret <= 0)
break;
first = 0;
ret = burn_drive_obtain_scsi_adr(fname, &i_bus_no, &i_host_no,
&i_channel_no, &i_target_no, &i_lun_no);
if(ret <= 0)
continue;
if(bus_no >=0 && i_bus_no != bus_no)
continue;
if(host_no >=0 && i_host_no != host_no)
continue;
if(channel_no >= 0 && i_channel_no != channel_no)
continue;
if(target_no >= 0 && i_target_no != target_no)
continue;
if(lun_no >= 0 && i_lun_no != lun_no)
continue;
if(strlen(fname) >= BURN_DRIVE_ADR_LEN)
{ ret = -1; goto ex;}
burn_drive_adr_debug_msg(
"burn_drive_convert_scsi_adr() found %s", fname);
strcpy(adr, fname);
{ ret = 1; goto ex;}
}
ret = 0;
ex:;
if (first == 0)
sg_give_next_adr(&enm, fname, sizeof(fname), -1);
return ret;
}
/* ts A60922 ticket 33 */
/* Try to find an enumerated address with the same host,channel,target,lun
as path */
int burn_drive_find_scsi_equiv(char *path, char adr[])
{
int ret = 0;
int bus_no, host_no, channel_no, target_no, lun_no;
char msg[4096];
ret = burn_drive_obtain_scsi_adr(path, &bus_no, &host_no, &channel_no,
&target_no, &lun_no);
if(ret <= 0) {
sprintf(msg,"burn_drive_obtain_scsi_adr( %s ) returns %d",
path, ret);
burn_drive_adr_debug_msg(msg, NULL);
return 0;
}
sprintf(msg, "burn_drive_find_scsi_equiv( %s ) : (%d),%d,%d,%d,%d",
path, bus_no, host_no, channel_no, target_no, lun_no);
burn_drive_adr_debug_msg(msg, NULL);
ret= burn_drive_convert_scsi_adr(-1, host_no, channel_no, target_no,
lun_no, adr);
return ret;
}
/* ts A60922 ticket 33 */
/** Try to convert a given existing filesystem address into a persistent drive
address. */
int burn_drive_convert_fs_adr_sub(char *path, char adr[], int *rec_count)
{
int ret;
struct stat stbuf;
burn_drive_adr_debug_msg("burn_drive_convert_fs_adr( %s )", path);
if (strncmp(path, "stdio:", 6) == 0 ||
burn_drive_is_enumerable_adr(path)) {
if(strlen(path) >= BURN_DRIVE_ADR_LEN)
return -1;
burn_drive_adr_debug_msg(
"burn_drive_is_enumerable_adr( %s ) is true", path);
strcpy(adr, path);
return 1;
}
if(lstat(path, &stbuf) == -1) {
burn_drive_adr_debug_msg("lstat( %s ) returns -1", path);
return 0;
}
if((stbuf.st_mode & S_IFMT) == S_IFLNK) {
ret = burn_drive_resolve_link(path, adr, rec_count, 0);
if(ret > 0)
return 1;
burn_drive_adr_debug_msg("link fallback via stat( %s )", path);
if(stat(path, &stbuf) == -1) {
burn_drive_adr_debug_msg("stat( %s ) returns -1",path);
return 0;
}
}
if((stbuf.st_mode&S_IFMT) == S_IFBLK ||
(stbuf.st_mode&S_IFMT) == S_IFCHR) {
ret = burn_drive_find_devno(stbuf.st_rdev, adr);
if(ret > 0)
return 1;
ret = burn_drive_find_scsi_equiv(path, adr);
if(ret > 0)
return 1;
}
burn_drive_adr_debug_msg("Nothing found for %s", path);
return 0;
}
/** Try to convert a given existing filesystem address into a persistent drive
address. */
int burn_drive_convert_fs_adr(char *path, char adr[])
{
int ret, rec_count = 0;
ret = burn_drive_convert_fs_adr_sub(path, adr, &rec_count);
return ret;
}
/** A pacifier function suitable for burn_abort.
@param handle If not NULL, a pointer to a text suitable for printf("%s")
*/
int burn_abort_pacifier(void *handle, int patience, int elapsed)
{
char *prefix= "libburn : ";
if(handle!=NULL)
prefix= handle;
fprintf(stderr,
"\r%sABORT : Waiting for drive to finish ( %d s, %d max)",
(char *) prefix, elapsed, patience);
return(1);
}
/* ts B00226 : Outsourced backend of burn_abort()
@param flag bit0= do not call burn_finish()
*/
int burn_abort_5(int patience,
int (*pacifier_func)(void *handle, int patience, int elapsed),
void *handle, int elapsed, int flag)
{
int ret, i, occup, still_not_done= 1, pacifier_off= 0, first_round= 1;
unsigned long wait_grain= 100000;
time_t start_time, current_time, pacifier_time, end_time;
#ifndef NIX
time_t stdio_patience = 3;
#endif
/*
fprintf(stderr,
"libburn_EXPERIMENTAL: burn_abort_5(%d,%d)\n", patience, flag);
*/
current_time = start_time = pacifier_time = time(0);
start_time -= elapsed;
end_time = start_time + patience;
/* >>> ts A71002 : are there any threads at work ?
If not, then one can force abort because the drives will not
change status on their own.
*/
while(current_time < end_time || (patience <= 0 && first_round)) {
still_not_done = 0;
for(i = 0; i < drivetop + 1; i++) {
occup = burn_drive_is_occupied(&(drive_array[i]));
if(occup == -2)
continue;
if(drive_array[i].drive_role != 1) {
#ifdef NIX
/* ts A90302
<<< this causes a race condition with drive
usage and drive disposal.
*/
drive_array[i].busy = BURN_DRIVE_IDLE;
burn_drive_forget(&(drive_array[i]), 1);
continue;
#else /* NIX */
/* ts A90318
>>> but if a pipe breaks then the drive
never gets idle.
So for now with a short patience timespan
and eventually a deliberate memory leak.
*/
if (current_time - start_time >
stdio_patience) {
drive_array[i].global_index = -1;
continue;
}
#endif /* ! NIX */
}
if(occup <= 10) {
if (drive_array[i].drive_role != 1)
/* occup == -1 comes early */
usleep(1000000);
burn_drive_forget(&(drive_array[i]), 1);
} else if(occup <= 100) {
if(first_round)
burn_drive_cancel(&(drive_array[i]));
still_not_done++;
} else if(occup <= 1000) {
still_not_done++;
}
}
first_round = 0;
if(still_not_done == 0 || patience <= 0)
break;
usleep(wait_grain);
current_time = time(0);
if(current_time>pacifier_time) {
if(pacifier_func != NULL && !pacifier_off) {
ret = (*pacifier_func)(handle, patience,
current_time-start_time);
pacifier_off = (ret <= 0);
}
pacifier_time = current_time;
}
}
if (!(flag & 1))
burn_finish();
return(still_not_done == 0);
}
/** Abort any running drive operation and finish libburn.
@param patience Maximum number of seconds to wait for drives to finish
@param pacifier_func Function to produce appeasing messages. See
burn_abort_pacifier() for an example.
@return 1 ok, all went well
0 had to leave a drive in unclean state
<0 severe error, do no use libburn again
*/
int burn_abort(int patience,
int (*pacifier_func)(void *handle, int patience, int elapsed),
void *handle)
{
int ret, flg = 0;
if (patience < 0) {
patience = 0;
flg |= 1;
}
ret = burn_abort_5(patience, pacifier_func, handle, 0, flg);
return ret;
}
/* ts A61020 API function */
int burn_drive_get_start_end_lba(struct burn_drive *d,
int *start_lba, int *end_lba, int flag)
{
if (d->start_lba == -2000000000 || d->end_lba == -2000000000)
return 0;
*start_lba = d->start_lba;
*end_lba= d->end_lba;
return 1;
}
/* ts A61020 API function */
int burn_disc_pretend_blank(struct burn_drive *d)
{
if (d->drive_role == 0)
return 0;
if (d->status != BURN_DISC_UNREADY &&
d->status != BURN_DISC_UNSUITABLE)
return 0;
d->status = BURN_DISC_BLANK;
return 1;
}
/* ts A61106 API function */
int burn_disc_pretend_full(struct burn_drive *d)
{
if (d->drive_role == 0)
return 0;
if (d->status != BURN_DISC_UNREADY &&
d->status != BURN_DISC_UNSUITABLE)
return 0;
d->status = BURN_DISC_FULL;
return 1;
}
/* ts A61021: new API function */
int burn_disc_read_atip(struct burn_drive *d)
{
if (burn_drive_is_released(d)) {
libdax_msgs_submit(libdax_messenger,
d->global_index, 0x0002010e,
LIBDAX_MSGS_SEV_FATAL, LIBDAX_MSGS_PRIO_HIGH,
"Attempt to read ATIP from ungrabbed drive",
0, 0);
return -1;
}
if(d->drive_role != 1)
return 0;
if ((d->current_profile == -1 || d->current_is_cd_profile)
&& (d->mdata->cdrw_write || d->current_profile != 0x08)) {
d->read_atip(d);
/* >>> some control of success would be nice :) */
} else {
/* mmc5r03c.pdf 6.26.3.6.3 : ATIP is undefined for non-CD
(and it seems meaningless for non-burners).
ts A90823: Pseudo-CD U3 memory stick stalls with ATIP.
It is !cdrw_write and profile is 0x08.
*/
return 0;
}
return 1;
}
/* ts A61110 : new API function */
int burn_disc_track_lba_nwa(struct burn_drive *d, struct burn_write_opts *o,
int trackno, int *lba, int *nwa)
{
int ret;
if (burn_drive_is_released(d)) {
libdax_msgs_submit(libdax_messenger,
d->global_index, 0x0002011b,
LIBDAX_MSGS_SEV_FATAL, LIBDAX_MSGS_PRIO_HIGH,
"Attempt to read track info from ungrabbed drive",
0, 0);
return -1;
}
if (d->busy != BURN_DRIVE_IDLE) {
libdax_msgs_submit(libdax_messenger,
d->global_index, 0x0002011c,
LIBDAX_MSGS_SEV_FATAL, LIBDAX_MSGS_PRIO_HIGH,
"Attempt to read track info from busy drive",
0, 0);
return -1;
}
*lba = *nwa = 0;
if (d->drive_role != 1)
return 0;
if (o != NULL)
d->send_write_parameters(d, o);
ret = d->get_nwa(d, trackno, lba, nwa);
return ret;
}
/* ts A70131 : new API function */
int burn_disc_get_msc1(struct burn_drive *d, int *start)
{
int ret, trackno;
if (burn_drive_is_released(d)) {
libdax_msgs_submit(libdax_messenger,
d->global_index, 0x0002011b,
LIBDAX_MSGS_SEV_FATAL, LIBDAX_MSGS_PRIO_HIGH,
"Attempt to read track info from ungrabbed drive",
0, 0);
return -1;
}
if (d->busy != BURN_DRIVE_IDLE) {
libdax_msgs_submit(libdax_messenger,
d->global_index, 0x0002011c,
LIBDAX_MSGS_SEV_FATAL, LIBDAX_MSGS_PRIO_HIGH,
"Attempt to read track info from busy drive",
0, 0);
return -1;
}
*start = 0;
if (d->drive_role != 1)
return 0;
ret = d->read_multi_session_c1(d, &trackno, start);
return ret;
}
/* ts A70213 : new API function */
off_t burn_disc_available_space(struct burn_drive *d,
struct burn_write_opts *o)
{
int lba, nwa;
if (burn_drive_is_released(d))
return 0;
if (d->busy != BURN_DRIVE_IDLE)
return 0;
if (d->drive_role == 0)
return 0;
if (d->drive_role != 1) {
if (d->media_capacity_remaining <= 0)
burn_drive_set_media_capacity_remaining(d,
(off_t) (512 * 1024 * 1024 - 1) * (off_t) 2048);
} else {
if (o != NULL)
d->send_write_parameters(d, o);
d->get_nwa(d, -1, &lba, &nwa);
}
if (o != NULL) {
if (o->start_byte > 0) {
if (o->start_byte > d->media_capacity_remaining)
return 0;
return d->media_capacity_remaining - o->start_byte;
}
}
return d->media_capacity_remaining;
}
/* ts A61202 : New API function */
int burn_disc_get_profile(struct burn_drive *d, int *pno, char name[80])
{
*pno = d->current_profile;
strcpy(name,d->current_profile_text);
return *pno >= 0;
}
/* ts A90815 : New API function */
int burn_drive_get_all_profiles(struct burn_drive *d, int *num_profiles,
int profiles[64], char is_current[64])
{
int i;
*num_profiles = d->num_profiles;
for (i = 0; i < d->num_profiles; i++) {
profiles[i] = (d->all_profiles[i * 4] << 8) |
d->all_profiles[i * 4 + 1];
is_current[i] = d->all_profiles[i * 4 + 2] & 1;
}
return 1;
}
/* ts A90815 : New API function */
int burn_obtain_profile_name(int profile_number, char name[80])
{
strcpy(name, mmc_obtain_profile_name(profile_number));
return(name[0] != 0);
}
/* ts A61223 : New API function */
int burn_drive_wrote_well(struct burn_drive *d)
{
return !d->cancel;
}
/* ts A61226 */
int burn_speed_descriptor_new(struct burn_speed_descriptor **s,
struct burn_speed_descriptor *prev,
struct burn_speed_descriptor *next, int flag)
{
struct burn_speed_descriptor *o;
(*s) = o = calloc(1, sizeof(struct burn_speed_descriptor));
if (o == NULL)
return -1;
o->source = 0;
o->profile_loaded = -2;
o->profile_name[0] = 0;
o->wrc = 0;
o->exact = 0;
o->mrw = 0;
o->end_lba = -1;
o->write_speed = 0;
o->read_speed = 0;
o->prev = prev;
if (prev != NULL) {
next = prev->next;
prev->next = o;
}
o->next = next;
if (next != NULL)
next->prev = o;
return 1;
}
/* ts A61226 */
/* @param flag bit0= destroy whole next-chain of descriptors */
int burn_speed_descriptor_destroy(struct burn_speed_descriptor **s, int flag)
{
struct burn_speed_descriptor *next, *o;
if ((*s) == NULL)
return 0;
if (flag&1)
for (o = (*s); o->prev != NULL; o = o->prev);
else
o = (*s);
next = o->next;
if (next != NULL)
next->prev = o->prev;
if (o->prev != NULL)
o->prev->next = next;
free((char *) (*s));
(*s) = NULL;
if (flag&1)
return burn_speed_descriptor_destroy(&next, flag&1);
return 1;
}
/* ts A61226 */
int burn_speed_descriptor_copy(struct burn_speed_descriptor *from,
struct burn_speed_descriptor *to, int flag)
{
to->source = from->source;
to->profile_loaded = from->profile_loaded;
strcpy(to->profile_name, from->profile_name);
to->wrc = from->wrc;
to->exact = from->exact;
to->mrw = from->mrw;
to->end_lba = from->end_lba;
to->write_speed = from->write_speed;
to->read_speed = from->read_speed;
return 1;
}
/* ts A61226 : free dynamically allocated sub data of struct scsi_mode_data */
int burn_mdata_free_subs(struct scsi_mode_data *m)
{
if(!m->valid)
return 0;
burn_speed_descriptor_destroy(&(m->speed_descriptors), 1);
return 1;
}
/* ts A61226 : API function */
int burn_drive_get_speedlist(struct burn_drive *d,
struct burn_speed_descriptor **speed_list)
{
int ret;
struct burn_speed_descriptor *sd, *csd = NULL;
(*speed_list) = NULL;
if(d->mdata->valid <= 0)
return 0;
for (sd = d->mdata->speed_descriptors; sd != NULL; sd = sd->next) {
ret = burn_speed_descriptor_new(&csd, NULL, csd, 0);
if (ret <= 0)
return -1;
burn_speed_descriptor_copy(sd, csd, 0);
}
(*speed_list) = csd;
return (csd != NULL);
}
/* ts A70713 : API function */
int burn_drive_get_best_speed(struct burn_drive *d, int speed_goal,
struct burn_speed_descriptor **best_descr, int flag)
{
struct burn_speed_descriptor *sd;
int best_speed = 0, best_lba = 0, source= 2, speed;
if (flag & 2)
source = -1;
if (speed_goal < 0)
best_speed = 2000000000;
*best_descr = NULL;
if(d->mdata->valid <= 0)
return 0;
for (sd = d->mdata->speed_descriptors; sd != NULL; sd = sd->next) {
if (flag & 1)
speed = sd->read_speed;
else
speed = sd->write_speed;
if ((source >= 0 && sd->source != source) ||
speed <= 0)
continue;
if (speed_goal < 0) {
if (speed < best_speed) {
best_speed = speed;
*best_descr = sd;
}
} else if (speed_goal == 0) {
if ((source == 2 && sd->end_lba > best_lba) ||
((source !=2 || sd->end_lba == best_lba) &&
speed > best_speed)) {
best_lba = sd->end_lba;
best_speed = speed;
*best_descr = sd;
}
} else if (speed <= speed_goal) {
if (speed > best_speed) {
best_speed = speed;
*best_descr = sd;
}
}
}
if (d->current_is_cd_profile && *best_descr == NULL && ! (flag & 2))
/* Mode page 2Ah is deprecated in MMC-5 although all known
burners still support it with CD media. */
return burn_drive_get_best_speed(d, speed_goal, best_descr,
flag | 2);
return (*best_descr != NULL);
}
/* ts A61226 : API function */
int burn_drive_free_speedlist(struct burn_speed_descriptor **speed_list)
{
return burn_speed_descriptor_destroy(speed_list, 1);
}
/* ts A70203 : API function */
int burn_disc_get_multi_caps(struct burn_drive *d, enum burn_write_types wt,
struct burn_multi_caps **caps, int flag)
{
enum burn_disc_status s;
struct burn_multi_caps *o;
int status, num_formats, ret, type, i;
off_t size;
unsigned dummy;
*caps = NULL;
s = burn_disc_get_status(d);
if(s == BURN_DISC_UNGRABBED)
return -1;
*caps = o = (struct burn_multi_caps *)
calloc(1, sizeof(struct burn_multi_caps));
if(*caps == NULL)
return -1;
/* Default says nothing is available */
o->multi_session = o->multi_track = 0;
o-> start_adr = 0;
o->start_alignment = o->start_range_low = o->start_range_high = 0;
o->might_do_tao = o->might_do_sao = o->might_do_raw = 0;
o->advised_write_mode = BURN_WRITE_NONE;
o->selected_write_mode = wt;
o->current_profile = d->current_profile;
o->current_is_cd_profile = d->current_is_cd_profile;
o->might_simulate = 0;
if (d->drive_role == 0)
return 0;
if (d->drive_role == 2) {
/* stdio file drive : random access read-write */
o->start_adr = 1;
size = d->media_capacity_remaining;
burn_os_stdio_capacity(d->devname, &size);
burn_drive_set_media_capacity_remaining(d, size);
o->start_range_high = size;
o->start_alignment = 2048; /* imposting a drive, not a file */
o->might_do_sao = 4;
o->might_do_tao = 2;
o->advised_write_mode = BURN_WRITE_TAO;
o->might_simulate = 1;
} else if (d->drive_role != 1) {
/* stdio file drive : sequential access write-only */
o->might_do_sao = 4;
o->might_do_tao = 2;
o->advised_write_mode = BURN_WRITE_TAO;
o->might_simulate = 1;
} else if (s != BURN_DISC_BLANK && s != BURN_DISC_APPENDABLE) {
return 0;
} else if (s == BURN_DISC_APPENDABLE &&
(wt == BURN_WRITE_SAO || wt == BURN_WRITE_RAW)) {
return 0;
} else if (wt == BURN_WRITE_RAW && !d->current_is_cd_profile) {
return 0;
} else if (d->current_profile == 0x09 || d->current_profile == 0x0a) {
/* CD-R , CD-RW */
if (d->block_types[BURN_WRITE_TAO]) {
o->multi_session = o->multi_track = 1;
o->might_do_tao = 2;
if (o->advised_write_mode == BURN_WRITE_NONE)
o->advised_write_mode = BURN_WRITE_TAO;
}
if (d->block_types[BURN_WRITE_SAO]) {
o->multi_session = o->multi_track = 1;
o->might_do_sao = 1;
if (o->advised_write_mode == BURN_WRITE_NONE)
o->advised_write_mode = BURN_WRITE_SAO;
}
if (d->block_types[BURN_WRITE_RAW]) {
o->might_do_raw = 1;
if (o->advised_write_mode == BURN_WRITE_NONE)
o->advised_write_mode = BURN_WRITE_RAW;
}
if (wt == BURN_WRITE_RAW)
o->multi_session = o->multi_track = 0;
else if(wt == BURN_WRITE_NONE || wt == BURN_WRITE_SAO ||
wt == BURN_WRITE_TAO)
o->might_simulate = !!d->mdata->simulate;
} else if (d->current_profile == 0x11 || d->current_profile == 0x14 ||
d->current_profile == 0x15) {
/* DVD-R , sequential DVD-RW , DVD-R/DL Sequential */
if (s == BURN_DISC_BLANK) {
o->might_do_sao = 1;
o->advised_write_mode = BURN_WRITE_SAO;
}
if (d->current_has_feat21h) {
#ifndef Libburn_dvd_r_dl_multi_no_close_sessioN
if (d->current_profile != 0x15)
#endif
o->multi_session = 1;
o->multi_track = 1;
o->might_do_tao = 2;
o->advised_write_mode = BURN_WRITE_TAO;
}
if (wt == BURN_WRITE_SAO)
o->multi_session = o->multi_track = 0;
if (wt == BURN_WRITE_NONE || wt == BURN_WRITE_SAO ||
wt == BURN_WRITE_TAO)
o->might_simulate = 1;
} else if (d->current_profile == 0x12 ||
d->current_profile == 0x13 ||
d->current_profile == 0x1a ||
d->current_profile == 0x43
) {
/* DVD-RAM, overwriteable DVD-RW, DVD+RW, BD-RE */
o->start_adr = 1;
ret = burn_disc_get_formats(d, &status, &size, &dummy,
&num_formats);
if (ret == 1) {
if (status == BURN_FORMAT_IS_FORMATTED)
o->start_range_high = size;
if (d->current_profile == 0x13) {
o->start_alignment = 32 * 1024;
for (i = 0; i < num_formats; i++) {
ret = burn_disc_get_format_descr(d, i,
&type, &size, &dummy);
if (ret <= 0)
continue;
if (type == 0x13) /* expandable */
break;
}
if (i >= num_formats) /* not expandable */
o->start_range_high -= 32 * 1024;
if (o->start_range_high < 0)
o->start_range_high = 0;
} else {
o->start_alignment = 2 * 1024;
if (d->best_format_size - 2048 >
o->start_range_high)
o->start_range_high =
d->best_format_size - 2048;
}
}
o->might_do_sao = 4;
o->might_do_tao = 2;
o->advised_write_mode = BURN_WRITE_TAO;
} else if (d->current_profile == 0x1b || d->current_profile == 0x2b ||
d->current_profile == 0x41) {
/* DVD+R , DVD+R/DL , BD-R SRM */
o->multi_session = o->multi_track = 1;
o->might_do_tao = 2;
o->might_do_sao = 1;
o->advised_write_mode = BURN_WRITE_TAO;
} else /* unknown media */
return 0;
if (s == BURN_DISC_APPENDABLE)
o->might_do_sao = o->might_do_raw = 0;
if (wt == BURN_WRITE_TAO && !o->might_do_tao)
return 0;
else if (wt == BURN_WRITE_SAO && !o->might_do_sao)
return 0;
else if (wt == BURN_WRITE_RAW && !o->might_do_raw)
return 0;
return 1;
}
/* ts A70203 : API function */
int burn_disc_free_multi_caps(struct burn_multi_caps **caps)
{
if (*caps == NULL)
return 0;
free((char *) *caps);
*caps = NULL;
return 1;
}
/* ts A70207 : evaluate write mode related peculiarities of a disc
@param flag bit0= fill_up_media is active
*/
int burn_disc_get_write_mode_demands(struct burn_disc *disc,
struct burn_write_opts *opts,
struct burn_disc_mode_demands *result, int flag)
{
struct burn_session *session;
struct burn_track *track;
int i, j, mode, unknown_track_sizes = 0, last_track_is_unknown = 0;
enum burn_disc_status s;
memset((char *) result, 0, sizeof(struct burn_disc_mode_demands));
if (disc == NULL)
return 2;
s = burn_disc_get_status(opts->drive);
if (s == BURN_DISC_APPENDABLE || disc->sessions > 1)
result->will_append = 1;
if (disc->sessions > 1)
result->multi_session = 1;
for (i = 0; i < disc->sessions; i++) {
session = disc->session[i];
if (session->tracks <= 0)
continue;
mode = session->track[0]->mode;
if (session->tracks > 1)
result->multi_track = 1;
for (j = 0; j < session->tracks; j++) {
track = session->track[j];
if (burn_track_is_open_ended(track)) {
if (burn_track_get_default_size(track) > 0) {
if (result->unknown_track_size == 0)
result->unknown_track_size = 2;
} else
result->unknown_track_size = 1;
unknown_track_sizes++;
last_track_is_unknown = 1;
} else
last_track_is_unknown = 0;
if (mode != track->mode)
result->mixed_mode = 1;
if (track->mode == BURN_MODE1) {
result->block_types |= BURN_BLOCK_MODE1;
} else if (track->mode == BURN_AUDIO) {
result->audio = 1;
result->block_types |= BURN_BLOCK_RAW0;
result->exotic_track = 1;
} else {
result->block_types |= opts->block_type;
result->exotic_track = 1;
}
}
}
if (flag&1) {/* fill_up_media will define the size of the last track */
if (unknown_track_sizes == 1 && last_track_is_unknown)
result->unknown_track_size = 0;
}
return (disc->sessions > 0);
}
/* ts A70903 : API */
int burn_drive_get_drive_role(struct burn_drive *d)
{
return d->drive_role;
}
/* ts A70923
Hands out pointers *dpt to directory path and *npt to basename.
Caution: the last '/' in adr gets replaced by a 0.
*/
static int burn__split_path(char *adr, char **dpt, char **npt)
{
*dpt = adr;
*npt = strrchr(*dpt, '/');
if (*npt == NULL) {
*npt = *dpt;
*dpt = ".";
return 1;
}
**npt = 0;
if(*npt == *dpt)
*dpt = "/";
(*npt)++;
return 2;
}
/* ts A70923 : API */
int burn_drive_equals_adr(struct burn_drive *d1, char *adr2_in, int role2)
{
struct stat stbuf1, stbuf2;
char adr1[BURN_DRIVE_ADR_LEN], *adr2 = adr2_in;
char conv_adr1[BURN_DRIVE_ADR_LEN], conv_adr2[BURN_DRIVE_ADR_LEN];
char *npt1, *dpt1, *npt2, *dpt2;
int role1, stat_ret1, stat_ret2, conv_ret2;
role1 = burn_drive_get_drive_role(d1);
burn_drive_d_get_adr(d1, adr1);
stat_ret1 = stat(adr1, &stbuf1);
if (strncmp(adr2, "stdio:", 6) == 0) {
adr2+= 6;
role2 = (!!adr2[0]) * 2;
}
if (strlen(adr2) >= BURN_DRIVE_ADR_LEN)
return -1;
stat_ret2 = stat(adr2, &stbuf2);
conv_ret2 = burn_drive_convert_fs_adr(adr2, conv_adr2);
/* roles 2 and 3 have the same name space and object interpretation */
if (role1 == 3)
role1 = 2;
if (role2 == 3)
role2 = 2;
if (strcmp(adr1, adr2) == 0 && role1 == role2)
return(1); /* equal role and address */
if (role1 == 1 && role2 == 1) {
/* MMC drive meets wannabe MMC drive */
if (conv_ret2 <= 0)
return 0; /* no MMC drive at adr2 */
if (strcmp(adr1, conv_adr2) == 0)
return 1; /* equal real MMC drives */
return 0;
} else if (role1 == 0 || role2 == 0)
return 0; /* one null-drive, one not */
else if (role1 != 1 && role2 != 1) {
/* pseudo-drive meets file object */
if (stat_ret1 == -1 || stat_ret2 == -1) {
if (stat_ret1 != -1 || stat_ret2 != -1)
return 0; /* one adress existing, one not */
/* Two non-existing file objects */
strcpy(conv_adr1, adr1);
burn__split_path(conv_adr1, &dpt1, &npt1);
strcpy(conv_adr2, adr2);
burn__split_path(conv_adr2, &dpt2, &npt2);
if (strcmp(npt1, npt2))
return 0; /* basenames differ */
stat_ret1= stat(adr1, &stbuf1);
stat_ret2= stat(adr2, &stbuf2);
if (stat_ret1 != stat_ret2)
return 0; /* one dir existing, one not */
/* Both directories exist. The basenames are equal.
So the adresses are equal if the directories are
equal.*/
}
if (stbuf1.st_ino == stbuf2.st_ino &&
stbuf1.st_dev == stbuf2.st_dev)
return 1; /* same filesystem object */
if (S_ISBLK(stbuf1.st_mode) && S_ISBLK(stbuf2.st_mode) &&
stbuf1.st_rdev == stbuf2.st_rdev)
return 1; /* same major,minor device number */
if <