libisoburn/libisoburn/libisoburn.h

1468 lines
65 KiB
C
Raw Normal View History

/*
API definition of libisoburn.
2009-01-05 15:33:46 +00:00
Copyright 2007-2009 Vreixo Formoso Lopes <metalpain2002@yahoo.es>
and Thomas Schmitt <scdbackup@gmx.net>
*/
/** Overview
libisoburn is a frontend for libraries libburn and libisofs which enables
creation and expansion of ISO-9660 filesystems on all CD/DVD media supported
by libburn. This includes media like DVD+RW, which do not support multi-session
management on media level and even plain disk files or block devices.
The price for that is thorough specialization on data files in ISO-9660
filesystem images. So libisoburn is not suitable for audio (CD-DA) or any
other CD layout which does not entirely consist of ISO-9660 sessions.
2008-02-14 08:44:29 +00:00
Connector functions
libisofs and libburn do not depend on each other but share some interfaces
by which they can cooperate.
libisoburn establishes the connection between both modules by creating the
necessary interface objects and attaching them to the right places.
Wrapper functions
The priciple of this frontend is that you may use any call of libisofs or
libburn unless it has a isoburn_*() wrapper listed in the following function
documentation.
E.g. call isoburn_initialize() rather than iso_init(); burn_initialize();
and call isoburn_drive_scan_and_grab() rather than burn_drive_scan_and_grab().
But you may call burn_disc_get_profile() directly if you want to display
the media type.
The wrappers will transparently provide the necessary emulations which
are appropriate for particular target drives and media states.
To learn about them you have to read both API descriptions: the one of
the wrapper and the one of the underlying libburn or libisofs call.
2008-02-14 08:44:29 +00:00
Macros BURN_* and functions burn_*() are documented in <libburn/libburn.h>
Macros ISO_* and functions iso_*() are documented in <libisofs/libisofs.h>
2008-02-14 08:44:29 +00:00
Usage model
There may be an input drive and an output drive. Either of them may be missing
with the consequence that no reading resp. writing is possible.
Both drive roles can be fulfilled by the same drive.
Input can be a random access readable libburn drive:
optical media, regular files, block devices.
Output can be any writeable libburn drive:
writeable optical media in burner, writeable file objects (no directories).
libburn demands rw-permissions to drive device file resp. file object.
If the input drive provides a suitable ISO RockRidge image, then its tree
may be loaded into memory and can then be manipulated by libisofs API calls.
The loading is done by isoburn_read_image() under control of
2008-02-15 21:19:24 +00:00
struct isoburn_read_opts which the application obtains from libisoburn
and manipulates by the family of isoburn_ropt_set_*() functions.
Writing of result images is controlled by libisofs related parameters
2008-02-15 21:19:24 +00:00
in a struct isoburn_imgen_opts which the application obtains from libisoburn
and manipulates by the family of isoburn_igopt_set_*() functions.
All multi-session aspects are handled by libisoburn according to these
settings. The application does not have to analyze media state and write
job parameters. It rather states its desires which libisoburn tries to
fulfill, or else will refuse to start the write run.
2008-02-14 08:44:29 +00:00
Setup for Growing, Modifying or Blind Growing
The connector function family offers alternative API calls for performing
the setup for several alternative image generation strategies.
Growing:
If input and output drive are the same, then isoburn_prepare_disc() is to
be used. It will lead to an add-on session on appendable or overwriteable
media with existing ISO image. With blank media it will produce a first
session.
Modifying:
If the output drive is not the input drive, and if it bears blank media
or overwriteable without a valid ISO image, then one may produce a consolidated
image with old and new data. This will copy file data from an eventual input
drive with valid image, add any newly introduced data from the local
filesystem, and produce a first session on output media.
To prepare for such an image generation run, use isoburn_prepare_new_image().
Blind Growing:
This method reads the old image from one drive and writes the add-on session
to a different drive. That output drive is nevertheless supposed to
finally lead to the same media from where the session was loaded. Usually it
will be stdio:/dev/fd/1 (i.e. stdout) being piped into some burn program
like with this classic gesture:
mkisofs -M $dev -C $msc1,$nwa | cdrecord -waiti dev=$dev
Blind growing is prepared by the call isoburn_prepare_blind_grow().
The input drive should be released immediately after this call in order
to allow the consumer of the output stream to access that drive for writing.
After either of these setups, some peripheral libburn drive parameter settings
like burn_write_opts_set_simulate(), burn_write_opts_set_multi(),
burn_drive_set_speed(), burn_write_opts_set_underrun_proof() should be made.
Do not set the write mode. It will be chosen by libisoburn so it matches job
and media state.
Writing the image
Then one may start image generation and write threads by isoburn_disc_write().
Progress may be watched at the output drive by burn_drive_get_status() and
isoburn_get_fifo_status().
At some time, the output drive will be BURN_DRIVE_IDLE indicating that
writing has ended.
One should inquire isoburn_drive_wrote_well() to learn about overall success.
2008-02-14 08:44:29 +00:00
Finally one must call isoburn_activate_session() which will complete any
eventual multi-session emulation.
2009-01-27 12:14:28 +00:00
Application Constraints
Applications shall include libisofs/libisofs.h , libburn/libburn.h and this
file itself: libisoburn/libisoburn.h .
They shall link with -lisofs -lburn -lisoburn or with the .o files emerging
from building those libraries from their sources.
Applications must use 64 bit off_t, e.g. on 32-bit Linux by defining
#define _LARGEFILE_SOURCE
#define _FILE_OFFSET_BITS 64
or take special precautions to interface with the library by 64 bit integers
where above .h files prescribe off_t. Not to use 64 bit file i/o will keep
the application from producing and processing ISO images of more than 2 GB
size.
*/
/* API functions */
/** Initialize libisoburn, libisofs and libburn.
Wrapper for : iso_init() and burn_initialize()
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param msg A character array for eventual messages (e.g. with errors)
@param flag Bitfield for control purposes (unused yet, submit 0)
@return 1 indicates success, 0 is failure
*/
int isoburn_initialize(char msg[1024], int flag);
2008-01-29 18:44:54 +00:00
/** Check whether all features of header file libisoburn.h from the given
major.minor.micro revision triple can be delivered by the library version
which is performing this call.
An application of libisoburn can easily memorize the version of the
libisofs.h header in its own code. Immediately after isoburn_initialize()
it should simply do this check:
if (! isoburn_is_compatible(isoburn_header_version_major,
isoburn_header_version_minor,
isoburn_header_version_micro, 0))
...refuse to start the program with this dynamic library version...
2008-02-14 08:44:29 +00:00
@since 0.1.0
2008-01-29 18:44:54 +00:00
@param major obtained at build time
@param minor obtained at build time
@param micro obtained at build time
@param flag Bitfield for control purposes. Unused yet. Submit 0.
@return 1= library can work for caller
0= library is not usable in some aspects. Caller must restrict
itself to an earlier API version or must not use this libray
at all.
*/
int isoburn_is_compatible(int major, int minor, int micro, int flag);
/** Obtain the three release version numbers of the library. These are the
2008-01-29 21:06:46 +00:00
numbers encountered by the application when linking with libisoburn,
2008-01-29 18:44:54 +00:00
i.e. possibly not before run time.
Better do not base the fundamental compatibility decision of an application
on these numbers. For a reliable check use isoburn_is_compatible().
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param major The maturity version (0 for now, as we are still learning)
@param minor The development goal version.
@param micro The development step version. This has an additional meaning:
2008-01-29 18:44:54 +00:00
Pare numbers indicate a version with frozen API. I.e. you can
rely on the same set of features to be present in all
published releases with that major.minor.micro combination.
2008-02-15 21:19:24 +00:00
Features of a pare release will stay available and ABI
compatible as long as the SONAME of libisoburn stays "1".
Currently there are no plans to ever change the SONAME.
Odd numbers indicate that API upgrades are in progress.
I.e. new features might be already present or they might
2008-02-15 21:19:24 +00:00
be still missing. Newly introduced features may be changed
incompatibly or even be revoked before release of a pare
version.
2008-01-29 18:44:54 +00:00
So micro revisions {1,3,5,7,9} should never be used for
dynamic linking unless the proper library match can be
guaranteed by external circumstances.
2008-02-15 21:19:24 +00:00
2008-02-14 08:44:29 +00:00
@return 1 success, <=0 might in future become an error indication
*/
void isoburn_version(int *major, int *minor, int *micro);
2008-02-14 08:44:29 +00:00
/** The minimum version of libisofs to be used with this version of libisoburn
at compile time.
2008-02-14 08:44:29 +00:00
@since 0.1.0
*/
#define isoburn_libisofs_req_major 0
#define isoburn_libisofs_req_minor 6
2009-04-15 18:52:41 +00:00
#define isoburn_libisofs_req_micro 18
/** The minimum version of libburn to be used with this version of libisoburn
at compile time.
2008-02-14 08:44:29 +00:00
@since 0.1.0
*/
#define isoburn_libburn_req_major 0
2009-01-05 15:33:46 +00:00
#define isoburn_libburn_req_minor 6
2009-03-14 11:57:02 +00:00
#define isoburn_libburn_req_micro 4
/** The minimum version of libisofs to be used with this version of libisoburn
at runtime. This is checked already in isoburn_initialize() which will
refuse on outdated version. So this call is for information purposes after
successful startup only.
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param major isoburn_libisofs_req_major as seen at build time
@param minor as seen at build time
@param micro as seen at build time
@return 1 success, <=0 might in future become an error indication
*/
int isoburn_libisofs_req(int *major, int *minor, int *micro);
/** The minimum version of libburn to be used with this version of libisoburn
at runtime. This is checked already in isoburn_initialize() which will
refuse on outdated version. So this call is for information purposes after
successful startup only.
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param major isoburn_libburn_req_major as seen at build time
@param minor as seen at build time
@param micro as seen at build time
@return 1 success, <=0 might in future become an error indication
*/
int isoburn_libburn_req(int *major, int *minor, int *micro);
/** These three release version numbers tell the revision of this header file
and of the API it describes. They are memorized by applications at build
time.
2008-02-14 08:44:29 +00:00
@since 0.1.0
*/
#define isoburn_header_version_major 0
2008-12-01 20:48:49 +00:00
#define isoburn_header_version_minor 3
2009-04-18 15:09:06 +00:00
#define isoburn_header_version_micro 9
/** Note:
Above version numbers are also recorded in configure.ac because libtool
wants them as parameters at build time.
2008-02-15 21:19:24 +00:00
For the library compatibility check, ISOBURN_*_VERSION in configure.ac
are not decisive. Only the three numbers here do matter.
*/
/** Usage discussion:
Some developers of the libburnia project have differing
opinions how to ensure the compatibility of libaries
and applications.
It is about whether to use at compile time and at runtime
the version numbers isoburn_header_version_* provided here.
Thomas Schmitt advises to use them.
Vreixo Formoso advises to use other means.
At compile time:
Vreixo Formoso advises to leave proper version matching
to properly programmed checks in the the application's
build system, which will eventually refuse compilation.
Thomas Schmitt advises to use the macros defined here
for comparison with the application's requirements of
library revisions and to eventually break compilation.
Both advises are combinable. I.e. be master of your
build system and have #if checks in the source code
of your application, nevertheless.
At runtime (via *_is_compatible()):
Vreixo Formoso advises to compare the application's
requirements of library revisions with the runtime
library. This is to allow runtime libraries which are
young enough for the application but too old for
the lib*.h files seen at compile time.
Thomas Schmitt advises to compare the header
revisions defined here with the runtime library.
This is to enforce a strictly monotonous chain
of revisions from app to header to library,
at the cost of excluding some older libraries.
These two advises are mutually exclusive.
2008-02-15 21:19:24 +00:00
-----------------------------------------------------
For an implementation of the Thomas Schmitt approach,
see libisoburn/burn_wrap.c : isoburn_initialize()
2008-02-15 21:19:24 +00:00
This connects libisoburn as "application" with libisofs
as "library".
The compatible part of Vreixo Formoso's approach is implemented
in configure.ac LIBBURN_REQUIRED, LIBISOFS_REQUIRED.
In isoburn_initialize() it would rather test by
iso_lib_is_compatible(isoburn_libisofs_req_major,...
than by
iso_lib_is_compatible(iso_lib_header_version_major,...
and would leave out the ugly compile time traps.
*/
/** Announce to the library an application provided method for immediate
delivery of messages. It is used when no drive is affected directly or
if the drive has no own msgs_submit() method attached by
isoburn_drive_set_msgs_submit.
If no method is preset or if the method is set to NULL then libisoburn
delivers its messages through the message queue of libburn.
@param msgs_submit The function call which implements the method
@param submit_handle Handle to be used as first argument of msgs_submit
@param submit_flag Flag to be used as last argument of msgs_submit
@param flag Unused yet, submit 0
@since 0.2.0
*/
int isoburn_set_msgs_submit(int (*msgs_submit)(void *handle, int error_code,
char msg_text[], int os_errno,
char severity[], int flag),
void *submit_handle, int submit_flag, int flag);
/** Aquire a target drive by its filesystem path resp. libburn persistent
address.
Wrapper for: burn_drive_scan_and_grab()
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param drive_infos On success returns a one element array with the drive
(cdrom/burner). Thus use with driveno 0 only. On failure
the array has no valid elements at all.
The returned array should be freed via burn_drive_info_free()
when the drive is no longer needed. But before this is done
one has to call isoburn_drive_release(drive_infos[0].drive).
2008-02-14 08:44:29 +00:00
@param adr The persistent address of the desired drive.
@param load 1 attempt to load the disc tray. 0 no attempt,rather failure.
@return 1 = success , 0 = drive not found , <0 = other error
*/
int isoburn_drive_scan_and_grab(struct burn_drive_info *drive_infos[],
char* adr, int load);
/** Aquire a target drive by its filesystem path resp. libburn persistent
address. This is a modern successor of isoburn_drive_scan_and_grab().
Wrapper for: burn_drive_scan_and_grab()
@since 0.1.2
@param drive_infos On success returns a one element array with the drive
(cdrom/burner). Thus use with driveno 0 only. On failure
the array has no valid elements at all.
The returned array should be freed via burn_drive_info_free()
when the drive is no longer needed. But before this is done
one has to call isoburn_drive_release(drive_infos[0].drive).
@param adr The persistent address of the desired drive.
@param flag bit0= attempt to load the disc tray.
Else: failure if not loaded.
bit1= regard overwriteable media as blank
bit2= if the drive is a regular disk file: truncate it to
the write start address
bit3= if the drive reports a read-only profile try to read
table of content by scanning for ISO image headers.
(depending on media type and drive this might
help or it might make the resulting toc even worse)
bit4= do not emulate table of content on overwriteable media
bit5= ignore ACL from external filesystems
bit6= ignore POSIX Extended Attributes from external
filesystems
@return 1 = success , 0 = drive not found , <0 = other error
*/
int isoburn_drive_aquire(struct burn_drive_info *drive_infos[],
char* adr, int flag);
/** Aquire a drive from the burn_drive_info[] array which was obtained by
a previous call of burn_drive_scan().
Wrapper for: burn_drive_grab()
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param drive The drive to grab. E.g. drive_infos[1].drive .
Call isoburn_drive_release(drive) when it it no longer needed.
2008-02-14 08:44:29 +00:00
@param load 1 attempt to load the disc tray. 0 no attempt, rather failure.
@return 1 success, <=0 failure
*/
int isoburn_drive_grab(struct burn_drive *drive, int load);
/** Attach to a drive an application provided method for immediate
delivery of messages.
If no method is set or if the method is set to NULL then libisoburn
delivers messages of the drive through the global msgs_submit() method
set by isoburn_set_msgs_submiti() or by the message queue of libburn.
@since 0.2.0
@param d The drive to which this function, handle and flag shall apply
@param msgs_submit The function call which implements the method
@param submit_handle Handle to be used as first argument of msgs_submit
@param submit_flag Flag to be used as last argument of msgs_submit
@param flag Unused yet, submit 0
*/
int isoburn_drive_set_msgs_submit(struct burn_drive *d,
int (*msgs_submit)(void *handle, int error_code,
char msg_text[], int os_errno,
char severity[], int flag),
void *submit_handle, int submit_flag, int flag);
/** Inquire the media status. Expect the whole spectrum of libburn BURN_DISC_*
with multi-session media. Emulated states with random access media are
BURN_DISC_BLANK and BURN_DISC_APPENDABLE.
Wrapper for: burn_disc_get_status()
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param drive The drive to inquire.
@return The status of the drive, or what kind of disc is in it.
Note: BURN_DISC_UNGRABBED indicates wrong API usage
*/
enum burn_disc_status isoburn_disc_get_status(struct burn_drive *drive);
/** Tells whether the media can be treated by isoburn_disc_erase().
Wrapper for: burn_disc_erasable()
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param drive The drive to inquire.
@return 0=not erasable , else erasable
*/
int isoburn_disc_erasable(struct burn_drive *d);
/** Mark the media as blank. With multi-session media this will call
burn_disc_erase(). With random access media, an eventual ISO-9660
filesystem will get invalidated by altering its start blocks on media.
In case of success, the media is in status BURN_DISC_BLANK afterwards.
Wrapper for: burn_disc_erase()
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param drive The drive with the media to erase.
@param fast 1=fast erase, 0=thorough erase
With DVD-RW, fast erase yields media incapable of multi-session.
*/
void isoburn_disc_erase(struct burn_drive *drive, int fast);
/** Set up isoburn_disc_get_msc1() to return a fabricated value.
2008-05-12 08:13:16 +00:00
This makes only sense between aquiring the drive and reading the
image. After isoburn_read_image() it will confuse the coordination
of libisoburn and libisofs.
Note: Sessions and tracks are counted beginning with 1, not with 0.
@since 0.1.6
@param drive The drive where msc1 is to be set
@param adr_mode Determines how to interpret adr_value and to set msc1.
If adr_value shall represent a number then decimal ASCII
digits are expected.
0= start lba of last session in TOC, ignore adr_value
1= start lba of session number given by adr_value
2= start lba of track given number by adr_value
3= adr_value itself is the lba to be used
4= start lba of last session with volume id
given by adr_value
@param adr_value A string describing the value to be eventually used.
@param flag Bitfield for control purposes.
bit0= @since 0.2.2
with adr_mode 3: adr_value might be 16 blocks too high
(e.g. -C stemming from growisofs). Probe for ISO head
at adr_value-16 and eventually adjust setting.
bit1= insist in seeing a disc object with at least one session
bit2= with adr_mode 4: use adr_value as regular expression
2008-05-12 08:13:16 +00:00
*/
int isoburn_set_msc1(struct burn_drive *d, int adr_mode, char *adr_value,
int flag);
/* ----------------------------------------------------------------------- */
/*
Wrappers for emulation of TOC on overwriteable media
Media which match the overwriteable usage model lack of a history of sessions
and tracks. libburn will not even hand out a burn_disc object for them and
always declare them blank. libisoburn checks for a valid ISO filesystem
header at LBA 0 and eventually declares them appendable.
Nevertheless one can only determine an upper limit of the size of the overall
image (by isoburn_get_min_start_byte()) but not a list of stored sessions
and their LBAs, as it is possible with true multi-session media.
The following wrappers add the capability to obtain a session and track TOC
from emulated multi-session images on overwriteables if the first session
was written by libisoburn-0.1.6 or later (i.e. with a header copy at LBA 32).
Be aware that the structs emitted by these isoburn calls are not compatible
with the libburn structs. I.e. you may use them only with isoburn_toc_*
calls.
isoburn_toc_disc needs to be freed after use. isoburn_toc_session and
isoburn_toc_track vanish together with their isoburn_toc_disc.
*/
/* Opaque handles to media, session, track */
struct isoburn_toc_disc;
struct isoburn_toc_session;
struct isoburn_toc_track;
/** Obtain a master handle for the table of content.
This handle governs allocated resources which have to be released by
isoburn_toc_disc_free() when no longer needed.
Wrapper for: burn_drive_get_disc()
@since 0.1.6
@param drive The drive with the media to inspect
@return NULL in case there is no content info, else it is a valid handle
*/
struct isoburn_toc_disc *isoburn_toc_drive_get_disc(struct burn_drive *d);
/** Tell the number of 2048 byte blocks covered by the table of content.
2008-08-09 16:06:18 +00:00
This number includes the eventual gaps between sessions and tracks.
So this call is not really a wrapper for burn_disc_get_sectors().
@since 0.1.6
@param disc The master handle of the media
@return number of blocks, <=0 indicates unknown or unreadable state
*/
int isoburn_toc_disc_get_sectors(struct isoburn_toc_disc *disc);
/** Get the array of session handles from the table of content.
Wrapper for: burn_disc_get_sessions()
@since 0.1.6
@param disc The master handle of the media
@param num returns the number of sessions in the array
@return the address of the array of session handles
*/
struct isoburn_toc_session **isoburn_toc_disc_get_sessions(
struct isoburn_toc_disc *disc, int *num);
/** Tell the number of 2048 byte blocks covered by a particular session.
Wrapper for: burn_session_get_sectors()
@since 0.1.6
@param s The session handle
@return number of blocks, <=0 indicates unknown or unreadable state
*/
int isoburn_toc_session_get_sectors(struct isoburn_toc_session *s);
/** Obtain a copy of the entry which describes the end of a particular session.
Wrapper for: burn_session_get_leadout_entry()
@since 0.1.6
@param s The session handle
@param entry A pointer to memory provided by the caller. It will be filled
with info according to struct burn_toc_entry as defined
in libburn.h
*/
void isoburn_toc_session_get_leadout_entry(struct isoburn_toc_session *s,
struct burn_toc_entry *entry);
/** Get the array of track handles from a particular session.
Wrapper for: burn_session_get_tracks()
@since 0.1.6
@param s The session handle
@param num returns the number of tracks in the array
@return the address of the array of track handles
*/
struct isoburn_toc_track **isoburn_toc_session_get_tracks(
struct isoburn_toc_session *s, int *num);
2008-08-09 16:06:18 +00:00
/** Obtain a copy of the entry which describes a particular track.
Wrapper for: burn_track_get_entry()
@since 0.1.6
@param t The track handle
@param entry A pointer to memory provided by the caller. It will be filled
with info according to struct burn_toc_entry as defined
in libburn.h
*/
void isoburn_toc_track_get_entry(struct isoburn_toc_track *t,
struct burn_toc_entry *entry);
/** Obtain eventual ISO image parameters of an emulated track. This info was
gained with much effort and thus gets cached in the track object.
If this call returns 1 then one can save a call of isoburn_read_iso_head()
with return mode 1 which could cause an expensive read operation.
@since 0.4.0
@param t The track handle
@param start_lba Returns the start address of the ISO session
@param image_blocks Returns the number of 2048 bytes blocks
@param volid Caller provided memory for the volume id
@param flag unused yet, submit 0
@return 0= not an emulated ISO session , 1= reply is valid
*/
int isoburn_toc_track_get_emul(struct isoburn_toc_track *t, int *start_lba,
int *image_blocks, char volid[33], int flag);
/** Release the memory associated with a master handle of media.
The handle is invalid afterwards and may not be used any more.
Wrapper for: burn_disc_free()
@since 0.1.6
@param disc The master handle of the media
*/
void isoburn_toc_disc_free(struct isoburn_toc_disc *disc);
/** Try whether the data at the given address look like a ISO 9660
image header and obtain its alleged size. Depending on the info mode
one other string of text information can be retrieved too.
@since 0.1.6
@param drive The drive with the media to inspect
@param lba The block number from where to read
@param image_blocks The number of 2048 bytes blocks
@param info Caller provided memory, enough to take eventual info reply
@param flag bit0-7: info return mode
0= do not return anything in info (do not even touch it)
1= copy volume id to info (info needs 33 bytes)
2= @since 0.2.2 :
copy 64 kB header to info (needs 65536 bytes)
bit13= @since 0.2.2:
do not read head from media but use first 64 kB from info
bit14= check both half buffers (not only second)
return 2 if found in first block
bit15= return -1 on read error
@return >0 seems to be a valid ISO image, 0 format not recognized, <0 error
*/
int isoburn_read_iso_head(struct burn_drive *d, int lba,
int *image_blocks, char *info, int flag);
/** Try to convert the given entity address into various entity addresses
which would describe it.
Note: Sessions and tracks are counted beginning with 1, not with 0.
@since 0.3.2
@param drive The drive where msc1 is to be set
@param adr_mode Determines how to interpret the input adr_value.
If adr_value shall represent a number then decimal ASCII
digits are expected.
0= start lba of last session in TOC, ignore adr_value
1= start lba of session number given by adr_value
2= start lba of track given number by adr_value
3= adr_value itself is the lba to be used
4= start lba of last session with volume id
given by adr_value
@param adr_value A string describing the value to be eventually used.
@param lba returns the block address of the entity, -1 means invalid
@param track returns the track number of the entity, -1 means invalid
@param session returns the session number of the entity, -1 means invalid
@param volid returns the volume id of the entity if it is a ISO session
@param flag Bitfield for control purposes.
bit2= with adr_mode 4: use adr_value as regular expression
@return <=0 error , 1 ok, ISO session, 2 ok, not an ISO session
*/
int isoburn_get_mount_params(struct burn_drive *d,
int adr_mode, char *adr_value,
int *lba, int *track, int *session,
char volid[33], int flag);
/* ----------------------------------------------------------------------- */
/*
Options for image reading.
An application shall create an option set object by isoburn_ropt_new(),
program it by isoburn_ropt_set_*(), use it with isoburn_read_image(),
and finally delete it by isoburn_ropt_destroy().
*/
/* ----------------------------------------------------------------------- */
struct isoburn_read_opts;
/** Produces a set of image read options, initialized with default values.
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param o the newly created option set object
2008-02-14 08:44:29 +00:00
@param flag Bitfield for control purposes. Submit 0 for now.
@return 1=ok , <0 = failure
*/
int isoburn_ropt_new(struct isoburn_read_opts **o, int flag);
/** Deletes an option set which was created by isoburn_ropt_new().
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param o The option set to work on
@param flag Bitfield for control purposes. Submit 0 for now.
@return 1= **o destroyed , 0= *o was already NULL (harmless)
*/
int isoburn_ropt_destroy(struct isoburn_read_opts **o, int flag);
/** Which existing ISO 9660 extensions in the image to read or not to read.
Whether to read the content of an existing image at all.
The bits can be combined by | resp. inquired by &.
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param ext Bitfield:
bit0= norock
Do not read Rock Ridge extensions
bit1= nojoliet
Do not read Joliet extensions
bit2= noiso1999
Do not read ISO 9660:1999 enhanced tree
bit3= preferjoliet
When both Joliet and RR extensions are present, the RR
tree is used. If you prefer using Joliet, set this to 1.
bit4= pretend_blank
Always create empty image.Ignore any image on input drive.
bit5= noaaip
@since 0.3.4
Do not load AAIP information from image. This information
eventually contains ACL or XFS-style Extended Attributes.
bit6= noacl
@since 0.3.4
Do not obtain ACL from external filesystem objects (e.g.
local filesystem files).
bit7= noea
@since 0.3.4
Do not obtain XFS-style Extended Attributes from external
filesystem objects (e.g. local filesystem files).
2008-02-14 08:44:29 +00:00
@return 1 success, <=0 failure
*/
#define isoburn_ropt_norock 1
#define isoburn_ropt_nojoliet 2
#define isoburn_ropt_noiso1999 4
#define isoburn_ropt_preferjoliet 8
#define isoburn_ropt_pretend_blank 16
#define isoburn_ropt_noaaip 32
#define isoburn_ropt_noacl 64
#define isoburn_ropt_noea 128
int isoburn_ropt_set_extensions(struct isoburn_read_opts *o, int ext);
int isoburn_ropt_get_extensions(struct isoburn_read_opts *o, int *ext);
/** Default attributes to use if no RockRidge extension gets loaded.
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param o The option set to work on
@param uid user id number (see /etc/passwd)
@param gid group id number (see /etc/group)
@param mode permissions (not file type) as of man 2 stat.
2008-01-31 15:22:23 +00:00
With directories, r-permissions will automatically imply
x-permissions. See isoburn_ropt_set_default_dirperms() below.
2008-02-14 08:44:29 +00:00
@return 1 success, <=0 failure
*/
int isoburn_ropt_set_default_perms(struct isoburn_read_opts *o,
uid_t uid, gid_t gid, mode_t mode);
int isoburn_ropt_get_default_perms(struct isoburn_read_opts *o,
uid_t *uid, gid_t *gid, mode_t *mode);
2008-01-31 15:22:23 +00:00
/** Default attributes to use on directories if no RockRidge extension
gets loaded.
Above call isoburn_ropt_set_default_perms() automatically adds
x-permissions to r-permissions for directories. This call here may
be done afterwards to set independend permissions for directories,
especially to override the automatically added x-permissions.
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param o The option set to work on
@param mode permissions (not file type) as of man 2 stat.
@return 1 success, <=0 failure
2008-01-31 15:22:23 +00:00
*/
int isoburn_ropt_set_default_dirperms(struct isoburn_read_opts *o,
mode_t mode);
int isoburn_ropt_get_default_dirperms(struct isoburn_read_opts *o,
mode_t *mode);
2008-01-31 15:22:23 +00:00
/** Set the character set for reading RR file names from ISO images.
2008-02-14 08:44:29 +00:00
@since 0.1.0
@param o The option set to work on
@param input_charset Set this to NULL to use the default locale charset
2008-01-31 15:22:23 +00:00
For selecting a particular character set, submit its
name, e.g. as listed by program iconv -l.
Example: "UTF-8".
2008-02-14 08:44:29 +00:00
@return 1 success, <=0 failure
*/
int isoburn_ropt_set_input_charset(struct isoburn_read_opts *o,
char *input_charset);
int isoburn_ropt_get_input_charset(struct isoburn_read_opts *o,
char **input_charset);